We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New PET/CMR Imaging Agent Enables Noninvasive Detection of Dangerous Blood Clots

By HospiMedica International staff writers
Posted on 02 Nov 2021

Investigators have developed and tested a targeted contrast agent that can detect blood clots in the hearts of patients with atrial fibrillation, or an irregular heartbeat. More...

The strategy developed by researchers at Massachusetts General Hospital (Boston, MA, USA) could be used to find clots in other parts of the body as well, such as in vessels that, when blocked, can lead to stroke. Atrial fibrillation—an irregular and often rapid heart rate—is a common condition that can cause clots to form in the heart that may then dislodge and flow to the brain, potentially leading to a stroke. The standard way to detect these clots requires patients to be sedated and to have a fairly large tube inserted down the throat and esophagus for a transesophageal ultrasound.

The investigators have now developed and tested a targeted contrast agent to detect and image these clots noninvasively. They also verified the potential of this strategy in a study. The agent has a strong affinity for fibrin, a component of blood clots, and is detected with a radioactive copper tag. If it doesn’t find any clots, then it’s rapidly excreted from the body; however, if it finds a clot and binds to it, clinicians can detect it with an imaging technique known as positron emission tomography.

The investigators first examined how the agent reacts (specifically, its metabolism and pharmacokinetics) in eight healthy volunteers. After injection, the agent was initially stable within the body and then was cleared from tissues within several hours, suggesting that it was safe. Next, the team administered the agent to patients with atrial fibrillation, some with clots in the heart and some without. Imaging tests of the heart revealed bright signals within the clots that were not seen in patients without clots.

“The idea behind the technology is that the agent will find and bind to blood clots anywhere in the body - not just in the heart - and make the clots detectable like a bright star in the night sky,” said senior author David Sosnovik, MD, FACC, director of the Program in Cardiovascular Imaging within MGH’s Martinos Center for Biomedical Imaging and an associate professor of Medicine at Harvard Medical School. “In some ways this is analogous to doing a smart search with a search engine such as Google, where the search terms one uses guide the search. We inject the agent into a small peripheral vein and it circulates throughout the human body on its search for clots.”

Related Links:
Massachusetts General Hospital


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
X-Ray System
Leonardo DR mini III
Infant Incubator
OKM 801
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.