Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Artificial Intelligence Helps Radiologists Improve Chest X-Ray Interpretation, Finds New Study

By HospiMedica International staff writers
Posted on 05 Jul 2021
A new diagnostic accuracy study has shown that radiologists can better interpret chest X-rays when assisted by a comprehensive deep-learning model that had a similar or better accuracy than the radiologists for most findings when compared with high-quality, gold standard assessment techniques.

Chest X-rays are widely used in clinical practice; however, interpretation can be hindered by human error and a lack of experienced thoracic radiologists. More...
Deep learning has the potential to improve the accuracy of chest X-ray interpretation. Therefore, the researchers aimed to assess the accuracy of radiologists with and without the assistance of a deep-learning model.

In the retrospective study, a deep-learning model was trained on 821,681 images (284,649 patients) from five data sets from Australia, Europe, and the US. 2,568 enriched chest X-ray cases from adult patients who had at least one frontal chest X-ray were included in the test dataset; cases were representative of inpatient, outpatient, and emergency settings. 20 radiologists reviewed cases with and without the assistance of the deep-learning model with a three-month washout period. The researchers assessed the change in accuracy of chest X-ray interpretation across 127 clinical findings when the deep-learning model was used as a decision support by calculating area under the receiver operating characteristic curve (AUC) for each radiologist with and without the deep-learning model. The team also compared AUCs for the model alone with those of unassisted radiologists. If the lower bound of the adjusted 95% CI of the difference in AUC between the model and the unassisted radiologists was more than −0·05, the model was considered to be non-inferior for that finding. If the lower bound exceeded 0, the model was considered to be superior.

The researchers found that unassisted radiologists had a macroaveraged AUC of 0·713 (95% CI 0·645–0·785) across the 127 clinical findings, compared with 0·808 (0·763–0·839) when assisted by the model. The deep-learning model statistically significantly improved the classification accuracy of radiologists for 102 (80%) of 127 clinical findings, was statistically non-inferior for 19 (15%) findings, and no findings showed a decrease in accuracy when radiologists used the deep-learning model. Unassisted radiologists had a macroaveraged mean AUC of 0·713 (0·645–0·785) across all findings, compared with 0·957 (0·954–0·959) for the model alone. Model classification alone was significantly more accurate than unassisted radiologists for 117 (94%) of 124 clinical findings predicted by the model and was non-inferior to unassisted radiologists for all other clinical findings. Thus, the study demonstrated the potential of a comprehensive deep-learning model to improve chest X-ray interpretation across a large breadth of clinical practice.



Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
OR Table Accessory
Angular Accessory Rail
Infrared Digital Thermometer
R1B1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.