We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Portable Gamma Ray Camera Speeds Up Cancer Location

By HospiMedica International staff writers
Posted on 14 Apr 2021
A hybrid gamma camera (HGC) could improve tumor localization in procedures such as sentinel lymph node biopsy, according to a new study.

Developed at Loughborough University (LBORO; United Kingdom) and the University of Leicester (United Kingdom), the HGC combines a stereoscopic gamma-ray pinhole camera and stereoscopic optical imaging, taking two different images from different angles and then calculating the exact position of whatever is being observed. More...
The device, which is about the size of a hairdryer, can be used to calculate the depth of a radioisotopic source beneath the skin surface, without any external positional tracking, with a mean deviation of less than five mm for imaging distances of 50–250 mm.

The researchers are planning to work with medical professionals in Uruguay to test the HGC, as currently there are only three 3D nuclear imaging centers--in Montevideo, Durazno, and Salto--that are capable of gamma ray imaging, and patients must travel hundreds of kilometers for initial imaging, and then return to their city of origin for surgery. If patients cannot attend one of these nuclear medicine centers, they risk having all their axillary nodes removed for sentinel lymph node (SLN) biopsy, instead of less invasive surgery. The study was published on February 11, 2021, in Physics in Medicine & Biology.

“The camera works by using a pinhole which allows an image of the source of gamma radiation to be taken. Doing this twice from two slightly different positions allows the camera to triangulate the exact distance from the source giving an accurate 3D reading,” said lead author Sarah Bugby, PhD, of the LBORO School of Science. “By combining gamma and optical imaging, this 3D information will tell the user where and how deep a source of radioactivity is. This has applications in radioguided surgery, and may also find use in other areas in the nuclear industry.”

Stereoscopic imaging triangulation is a well-established technique for distance estimation, such as in astronomy to measure the vast distances to stars. As the HGC acquires both gamma and optical images, with a known relationship between the magnification factor of each, source distance can be calculated to the imaging surface. Combining the two measurements therefore allows the calculation of source depth beneath the surface.

Related Links:
Loughborough University
University of Leicester



Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Digital X-Ray Detector Panel
Acuity G4
Medical Monitor
VITALMAX 4100SL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.