We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




PET-Based Test Predicts Hormone Therapy Response

By HospiMedica International staff writers
Posted on 24 Feb 2021
A positron emission tomography (PET)-based imaging approach can distinguish breast cancer patients unlikely to benefit from hormone therapy (HT), claims a new study. More...


Researchers at the Washington University (WUSTL; St. Louis, MO, USA) School of Medicine and the University of Illinois at Urbana-Champaign (UIUC; USA) hypothesized that an estradiol challenge would increase progesterone receptor (PgR) levels only in estrogen receptor (ER) positive tumors. To test this hypothesis, they conducted a trial in 43 postmenopausal women with advanced ER+ breast cancer of the uptake of 21-[18F]fluorofuranylnorprogesterone (FFNP, a progestin analog), before and after a one-day estradiol challenge.

The results showed 100% sensitivity and specificity to the estradiol challenge. Post-challenge increase in tumor FFNP uptake was seen in the 28 women with clinical benefit from HT (the responders), but not in the 15 others without clinical benefit (non-responders), indicating that change in tumor FFNP uptake can predict the response to HT in women with ER+ breast cancer. Six-month results also showed significantly longer survival rates in the responding subjects. The study was published on February 2, 2021, in Nature Communications.

“If breast cancer in a patient is estrogen receptor-positive, doctors will usually recommend hormone therapy, even though they know it will only work for slightly more than half the patients,” said senior author Professor Farrokh Dehdashti, MD, of WUSTL. “We observed 100% agreement between the response to estrogen challenge and the response to hormone therapy, even though the participants were on a variety of treatment regimens. This method could provide valuable information to oncologists deciding how best to treat their patients.”

PET is a nuclear medicine imaging technique that produces a 3D image of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide tracer, such as FFNP. Tracer concentrations within the body are then constructed in 3D by computer analysis.

Related Links:
Washington University
School of Medicine and the University of Illinois at Urbana-Champaign



Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Imaging Table
Stille imagiQ2
X-Ray Meter
Cobia SENSE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.