We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Microbubbles Augment RT in Liver Cancer Patients

By HospiMedica International staff writers
Posted on 31 Dec 2020
A new study suggests that bursting gas-filled microbubbles using ultrasound waves sensitizes liver tumors to targeted radiation therapy (RT), improving overall survival.

Researchers at Thomas Jefferson University (TJU; Philadelphia, PA, USA) conducted a pilot study involving 28 patients (mean age 70 years, 17 men) with hepatocellular carcinoma (HCC), who were randomly assigned to trans-arterial radioembolization (TARE), or TARE in conjunction with ultrasound-triggered destruction of microbubbles (UTMD). More...
The researchers evaluated tumor response to each treatment. The safety of UTMD was evaluated by physiologic monitoring, liver function tests, adverse events, and radiopharmaceutical distribution.

No significant changes in body temperature, heart rate, liver function, or diastolic or systolic pressure before and after UTMD were found. Preliminary efficacy results showed that 93% of tumors had partial to complete response to the TARE+UTMD approach, while only 50% showed a response in the TARE alone group. The researchers also found that patients receiving the combined therapy were also more likely to receive a liver transplant, and also lived longer and required fewer retreatments compared to those receiving TARE alone. The study was published on December 8, 2020, in Radiology.

"This approach has shown to be effective in preclinical studies using animal models of other solid tumors like bladder, prostate, and breast cancer. This is the first work to demonstrate this approach is safe and shows promise in humans with liver cancer, which is very exciting,” said lead author John Eisenbrey, PhD. “This approach could be effective in treating metastatic liver tumors, but also other types of primary cancer. The bubbles themselves can also be engineered to deliver chemotherapy or oxygen as they burst.”

TARE is an experimental therapy for unresectable HCC. The technique involves attaching radioactive Yttrium molecules to tiny glass beads, which are then injected directly into the blood vessels feeding the liver tumor. As healthy liver tissue is mainly perfused by the portal vein, while most liver malignancies derive their blood supply from the hepatic artery, TARE can be selectively administered to the tumors. The microspheres lodge in the small vessels of the tumor (embolization), emitting localized RT to targeted segments, results in tissue necrosis. Damage to healthy liver tissue is thus minimized.

Related Links:
Thomas Jefferson University


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Spirometry & Oximetry Software
MIR Spiro
Infant Resuscitator
Easypuff
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.