Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Optical MEG Sensor Detects Weak Brain Waves

By HospiMedica International staff writers
Posted on 14 Dec 2020
An optical magnetoencephalography (MEG) sensor can help detect signs of traumatic brain injury (TBI), dementia, and schizophrenia, according to a new study.

Developed at the University of Birmingham (UB; United Kingdom), the new sensor is based on an optically pumped magnetometer (OPM) that utilizes a nonlinear magneto-optical rotation (NMOR) technique, with polarized light used to detect changes in the orientation of atom spin when exposed to a magnetic field. More...
The sensor head, which contains only optical, non-ferrous elements, is connected to a module that holds all the electronic components located outside the magnetically shielded room to further reducing crosstalk.

Using the OPM sensor, the researchers were able to detect auditory evoked fields in a background field of 70 nT, suggesting it could be used for MEG testing outside of a specialized unit, or even in a hospital ward. When it was benchmarked against conventional superconducting quantum interference device (SQUID) sensors, performance was comparable. The researchers further demonstrated that the OPM sensor could detect brain oscillation modulations in the alpha band. The study was published on October 24, 2020, in NeuroImage.

“Existing MEG sensors need to be at a constant, cool temperature and this requires a bulky helium-cooling system, which means they have to be arranged in a rigid helmet that will not fit every head size and shape. They also require a zero-magnetic field environment to pick up the brain signals,” said lead author Anna Kowalczyk, PhD. “Testing demonstrated that our stand-alone sensor does not require these conditions. Its performance surpasses existing sensors, and it can discriminate between background magnetic fields and brain activity.”

“We know that early diagnosis improves outcomes and this technology could provide the sensitivity to detect the earliest changes in brain activity in conditions like schizophrenia, dementia, and ADHD,” said study co-author Professor Ole Jensen, PhD, co-director of the UB Centre for Human Brain Health. “It also has immediate clinical relevance, and we are already working with clinicians at the Queen Elizabeth hospital to investigate its use in pinpointing the site of traumatic brain injuries.”

MEG systems have traditionally been based on very sensitive magnetometers cryogenic sensors which detect the small extracranial magnetic fields generated by synchronized current in neuronal assemblies. Newer non-cryogenic quantum-enabled sensors are based on OPMs. This allows for a millisecond-by-millisecond picture of which parts of the brain are engaged when different tasks are undertaken, such as speaking or moving.

Related Links:
University of Birmingham


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Silver Member
ECG Management System
NEMS Web
Critical Care Conversion Kit
Adapter+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.