Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Improves X-Ray Hip Fracture Diagnosis

By HospiMedica International staff writers
Posted on 10 Aug 2020
Using artificial intelligence (AI) algorithms to analyze x-ray images improves radiologist identification of hip fractures, according to a new study. More...


Developed by researchers at Teikyo University (Tokyo, Japan), the University of Occupational and Environmental Health (Fukuoka, Japan), and other institutions, the deep convolutional neural network (CNN) for detecting hip fractures from x-rays used computerized tomography (CT) and magnetic resonance imaging (MRI) as a gold standard for comparison. The study involved 327 patients who underwent pelvic CT or MRI and were diagnosed with proximal femoral fractures; the AI algorithm was trained with 302 of these exams.

The remaining 25 cases and another 25 control subjects were then used to test the DCNN, with seven readers taking part in this study; a continuous rating scale recorded each observer's confidence level. Subsequently, each observer interpreted the x-rays with the CNN outputs and rated them again. The area under the curve (AUC) was then used to compare the fracture detection. The results showed the average AUC of the readers was 0.832; the AUC of DCNN alone was 0.905; and the average AUC of the readers with CNN outputs was 0.876. The study was published on July 23, 2020, in the European Journal of Radiology.

“The study results show that AI offers a number of benefits for this particular clinical scenario. Deep CNN may have the potential to identify additional abstract features that have not been apparent to the human reader,” concluded lead author Tsubasa Mawatari, PhD, and colleagues. “The combination could mitigate the at-times challenging task of spotting hip fractures on x-ray, increase the efficiency of diagnosis, and expand access to ‘expert level’ medical image interpretation.”

Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:

Teikyo University
University of Occupational and Environmental Health

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Imaging Table
Stille imagiQ2
Medical Monitor
SILENIO D
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.