We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Innovative CT Scan Technique Reduces Radiation Exposure

By HospiMedica International staff writers
Posted on 03 Aug 2020
A new study shows that splitting a full C-ray beam into narrower beamlets can reduce the radiation dose during a CT (computed tomography) scan.

Developed by researchers at University College London (UCL, United Kingdom), the new method, called cycloidal computed tomography, involves both probing the sample with an array of thin beamlets shaped by a mask and the application of a cycloidal acquisition scheme, by which the sample is simultaneously rotated and translated. More...
If the mask apertures are smaller than the combined blur of the x-ray source and detector, and there is no significant overlap between beamlets, the higher spatial frequencies facilitate efficient reconstruction into high-resolution tomographic images.

The researchers then compared the novel method to traditional CT scanning methods, wherein the item rotates as a full beam is directed to it. They found that the cycloidal CT method delivers lower doses of radiation, but produced the same quality image. In addition, a preliminary study of the signal-to-noise (SNR) ratio versus the delivered dose revealed significant dose-saving potential. The study was published on July 23, 2020, in Physical Review.

“This new method fixes two problems. It can be used to reduce the dose, but if deployed at the same dose it can increase the resolution of the image. This means that the sharpness of the image can be easily adjusted using masks with different-sized apertures, allowing greater flexibility and freeing the resolution from the constraints of the scanner's hardware,” said senior author Professor Sandro Olivo, PhD. “The new method can be adapted for medical scanners to reduce the amount of radiation among millions of people getting CT scans each year.”

Related Links:
University College London


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Critical Care Conversion Kit
Adapter+
Autoclave
Advance
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.