Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New Study Maps Out the Intracardiac Nervous System

By HospiMedica International staff writers
Posted on 18 Jun 2020
Using a new imaging method called knife-edge scanning microscopy, a three-dimensional (3D) model of the rat heart anatomy, including the intracardiac nervous system (ICN), has been created.

Researchers at Thomas Jefferson University (TJU; Philadelphia, PA, USA), Strateos (San Francisco, CA, USA), and other institutions developed and integrated several distinct technologies, including whole-organ imaging and software development, in order to support precise 3D neuroanatomical mapping and molecular phenotyping of the ICN. More...
By precisely integrating anatomical and molecular data in the digitally reconstructed whole heart, the nervous network could be elucidated in 3D with micron scale resolution.

The resulting atlas shows the full extent and position of neuronal clusters on the base and posterior left atrium of the rat heart, and the distribution of molecular phenotypes that are defined along the base-to-apex axis, which had not been previously described. The data also helped sort the heart’s neurons into discrete groups, with most of the neuron clusters dotting the area on the coronal aspect of the heart, where blood vessels come in and out. Other clusters spread down the posterior section of the heart, and were particularly abundant on the left side. The study was published on May 26, 2020, in iScience.

“Our work provides a model to precisely integrate anatomical and molecular data in the 3D digitally reconstructed whole heart with high resolution at the micron scale,” said senior author systems biologist James Schwaber, PhD, of TJU. “The comprehensive, 3-D map of the heart’s little brain could ultimately lead to targeted therapies that could treat or prevent heart diseases.”

The complex ICN system consists of a network of ganglionic plexuses and interconnecting ganglions and axons. Each ganglionic plexus contains numerous intracardiac ganglia that operate as local integration centers, modulating the intricate autonomic interactions between the extrinsic and ICN systems. The current understanding is that the ICN modulates a range of cardiac physiological functions, including chronotropy, dromotropy, inotropy, and lusitropy.

Related Links:
Thomas Jefferson University
Strateos



Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Infant Incubator
OKM 801
X-Ray System
Leonardo DR mini III
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.