Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




CT AI Algorithm Categorizes Lung Nodule Cancer Risk

By HospiMedica International staff writers
Posted on 20 May 2020
A new study indicates that an artificial intelligence (AI) strategy can correctly assess and categorize suspicious indeterminate pulmonary nodules (IPNs). More...


Developed at Vanderbilt University (Nashville, TN, USA), Optellum (Oxford, United Kingdom), and other institutions, the lung cancer prediction convolutional neural network (LCP-CNN) model was first trained using computerized tomography (CT) images of IPNs from the U.S. National Lung Screening Trial (NLST), internally validated, and externally tested on cohorts from two academic institutions. The researchers then compared the LCP-CNN to traditional risk prediction models on a very large dataset of 15,693 nodules.

The results showed that the AI risk model was associated with an improved accuracy in the predicted disease risk calculation at each threshold of therapy management, as well as in the external validation cohorts. When compared to conventional risk models currently used, the LCP-CNN algorithm reclassified the IPNs into low-risk or high-risk categories in over a third of cancers and benign nodules. The study was published on April 24, 2020, in the American Journal of Respiratory and Critical Care Medicine.

“The management IPNs remains challenging, and strategies to decrease the rate of unnecessary invasive procedures and to optimize surveillance regimens are needed,” concluded lead author Professor Pierre Massion, MD, of Vanderbilt University, and colleagues. “This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low or high-risk categories, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.”

Deep learning is part of a broader family of AI machine learning methods that use data representations, as opposed to task specific algorithms. It involves CNN algorithms that execute a cascade of many layers of nonlinear processing units in order to enable feature extraction, conversion, and transformation. Each successive layer uses the output from the previous layer as input to form a hierarchical representation.

Related Links:
Vanderbilt University
Optellum



Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
Infant Incubator
OKM 801
OR Table Accessory
Angular Accessory Rail
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.