We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Artificial Intelligence Improves Brain MRI Resolution

By HospiMedica International staff writers
Posted on 27 Jan 2020
Super-resolution (SR) techniques can be applied to magnetic resonance imaging (MRI) scans by training a convolutional neuronal network (CNN), claims a new study.

Researchers at the University of Málaga (UMA; Spain) developed a CNN to which a regularly spaced shifting mechanism over the input image was applied to increase resolution, with the aim of substantially improving the quality of the resulting image; this enables specialists to identify brain-related pathologies such physical injuries, cancer, or language disorders with increased accuracy and definition. More...
The deep learning (DL) process can be formed autonomously, without any supervision, allowing an identification effort that the human eye would not be capable of doing.

According to the researchers, the results obtained from applying the CNN on different MRI images show a considerable improvement both in the restored image and in the residual image, without an excessive increase in computing time. In addition, the images provide increased resolution without distorting the patients' brain structures, and favorably compared to other SR techniques, such as the peak signal-to-noise (SNR) ratio, the structural similarity index, and Bhattacharyya coefficient metrics. The study was published on October 22, 2019, in Neurocomputing.

“Deep learning is based on very large neural networks, and so is its capacity to learn, reaching the complexity and abstraction of a brain,” said lead author Karl Thurnhofer, PhD, of the UMA department of computer languages and computer science. “So far, the acquisition of quality brain images has depended on the time the patient remained immobilized in the scanner; with our method, image processing is carried out later on the computer.”

Deep learning is part of a broader family of AI machine learning methods that is based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
University of Málaga


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
ECG Management System
NEMS Web
Infrared Digital Thermometer
R1B1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.