We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New AI Model Identifies Women Facing Future Risk of Breast Cancer

By HospiMedica International staff writers
Posted on 07 Jan 2020
Researchers from the Karolinska Institute (Stockholm, Sweden) have developed a sophisticated type of artificial intelligence (AI) which can outperform existing models at predicting which women are at future risk of breast cancer.

Most existing breast cancer screening programs are based on mammography at similar time intervals -- typically, annually or every two years -- for all women. More...
This "one size fits all" approach is not optimized for cancer detection on an individual level and may hamper the effectiveness of screening programs. High breast density, or a greater amount of glandular and connective tissue compared to fat, is considered a risk factor for cancer. While density may be incorporated into risk assessment, current prediction models may fail to fully take advantage of all the rich information found in mammograms. This information has the potential to identify women who would benefit from additional screening with MRI.

The Swedish researchers developed a risk model that relies on a deep neural network, a type of AI that can extract vast amounts of information from mammographic images. It offers inherent advantages over other methods such as visual assessment of mammographic density by the radiologist that may be unable to capture all risk-relevant information in the image. The new model was developed and trained on mammograms from cases diagnosed between 2008 and 2012 and then studied on more than 2,000 women ages 40 to 74 who had undergone mammography in the Karolinska University Hospital system. Of the 2,283 women in the study, 278 were later diagnosed with breast cancer.

The deep neural network showed a higher risk association for breast cancer as compared to the best mammographic density model. The false negative rate -- the rate at which women who were not categorized as high-risk were later diagnosed with breast cancer -- was lower for the deep neural network than for the best mammographic density model. The study findings support a future role for AI in breast cancer risk assessment. As an additional benefit, the AI approach can continually be improved with exposure to more high-quality data sets.

"The deep neural network overall was better than density-based models," said study lead author Karin Dembrower, M.D., breast radiologist and Ph.D. candidate from the Karolinska Institute in Stockholm, Sweden. "And it did not have the same bias as the density-based model. Its predictive accuracy was not negatively affected by more aggressive cancer subtypes."

Related Links:
Karolinska Institute


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Medical Monitor
SILENIO D
Infrared Digital Thermometer
R1B1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.