Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




MIT Researchers Build Machine Learning Model that Quickly Generates Brain Scan Templates to Aid Diagnosis

By HospiMedica International staff writers
Posted on 31 Dec 2019
A team of researchers from the Massachusetts Institute of Technology (Cambridge, MA, USA) have devised a method that accelerates the process for creating and customizing templates used in medical-image analysis, to guide disease diagnosis.

Medical image analysis is used to crunch datasets of patients’ medical images and capture structural relationships that may indicate the progression of diseases. More...
In many cases, analysis requires use of a common image template, called an “atlas,” that’s an average representation of a given patient population. Atlases serve as a reference for comparison, for example to identify clinically significant changes in brain structures over time. However, building a template is a time-consuming, laborious process, often taking days or weeks to generate, especially when using 3D brain scans. To save time, researchers often download publicly available atlases previously generated by research groups, although these fail to fully capture the diversity of individual datasets or specific subpopulations, such as those with new diseases or from young children. Ultimately, the atlas cannot be smoothly mapped onto outlier images, producing poor results.

The MIT researchers devised an automated machine-learning model that generates “conditional” atlases based on specific patient attributes, such as age, sex, and disease. By leveraging shared information from across an entire dataset, the model can also synthesize atlases from patient subpopulations that may be completely missing in the dataset. The researchers hope clinicians can use the model to build their own atlases quickly from their own, potentially small datasets.

“The world needs more atlases,” says first author Adrian Dalca, a former postdoc in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and now a faculty member in radiology at Harvard Medical School and Massachusetts General Hospital. “Atlases are central to many medical image analyses. This method can build a lot more of them and build conditional ones as well.”

Related Links:
Massachusetts Institute of Technology


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Xenon Light Source
CLV-S400
Infant Resuscitator
Easypuff
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.