Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Artificial Intelligence Personalizes Musculoskeletal Modeling

By HospiMedica International staff writers
Posted on 11 Nov 2019
A new study shows how a deep learning tool can segment individual muscles from computerized tomography (CT) images so as to create a personalized biomechanical model.

Developed by researchers at the Nara Institute of Science and Technology (NAIST; Japan) and Osaka University Graduate School of Medicine (Japan), the new artificial intelligence (AI) tool is based on convolutional neural networks (CNNs) that use U-Net architecture with Monte Carlo dropout, which infers an uncertainty metric, in addition to the segmentation label. More...
By segmenting individual muscles to form a comprehensive model of the musculoskeletal system, people suffering from amyotrophic lateral sclerosis (ALS), for example, can receive a personalized rehabilitation device, and athletes can reach better performance levels.

To evaluate the performance of the proposed method, the researchers used two data sets: 20 fully annotated CTs of the hip and thigh regions, and 18 partially annotated publicly available CTs. They found that Bayesian U-Net had better segmentation accuracy than other methods, including the hierarchical multi-atlas method, which is viewed as state-of-the-art, and did so while reducing the time to train and validate the system by a surgeon. According to the researchers, the accurate patient-specific analysis of individual muscle will aid biomechanical simulation and quantitative evaluation of muscle atrophy. The study was published on September 10, 2019, in IEEE Explore.

“Once we have the CT images, we need to segment the individual muscles for building our model. The challenge in segmenting individual muscles is the low contrast of the imaging at border regions of neighboring muscles,” said lead author Professor Yoshinobu Sato, PhD, of NAIST. “Bayesian U-Net learned the musculoskeletal anatomy to create segmentations that would have been created by experts with high fidelity and our collaborator orthopedic surgeon, Prof. Nobuhiko Sugano of Osaka University Hospital, is quite satisfied with this achievement.”

Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Nara Institute of Science and Technology
Osaka University Graduate School of Medicine



Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Medical Monitor
SILENIO D
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.