Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Hyperspectral Imaging Detects Cancer During Surgery

By HospiMedica International staff writers
Posted on 26 Oct 2019
A smart surgical microscope that examines cells at the ultraviolet (UV) and near-infrared (NIR) spectrum could help identify cancer cells in the operating room (OR).

Developed by researchers University of Texas (UT) Southwestern Medical Centre (UTS; Dallas, TX, USA), the University of Texas at Dallas (UTD; Richardson, USA), and other institutions, the reflectance-based hyperspectral Imaging (HSI) and autofluorescence imaging microscope provides a non-ionizing optical imaging modality that can accurately detect and help reduce inadequate surgical margins during squamous cell carcinoma (SCC) within minutes, using deep learning and machine learning tools.

For the study, the researchers examined 102 excised tissue specimens. More...
The tissue specimens were first imaged with reflectance-based HSI and autofluorescence imaging, and afterwards with two fluorescent dyes for comparison. The results showed that reflectance-based HSI and autofluorescence imaging could detect cancer at micrometer resolution, and outperformed both proflavin dye and standard red, green, and blue (RGB) images. Overall, HSU predicted the presence of cancer cells with 80-90% accuracy. The study was published on September 14, 2019, in the journal Cancers.

“We hope that this technology can help surgeons better detect cancer during surgery, reduce operating time, lower medical costs, and save lives. HSI is noninvasive, portable, and does not require radiation or a contrast agent,” concluded senior author Baowei Fei, PhD, EngD, of the UTS department of radiology, and colleagues. “If we have a large database that knows what is normal tissue and what is cancerous tissue, then we can train our system to learn the features of the spectra. Once it's trained, the smart device can predict whether a new sample is a cancerous tissue or not.”

HSI can help acquire large numbers of spectral bands throughout the electromagnetic spectrum (both within and beyond the visual range) with a very fine spatial resolution. So fine, in fact, that for every image pixel a full spectrum of color can be detected. Using this information and complex classification algorithms, it is possible to determine which material or substance is located in each pixel.

Related Links:
University of Texas (UT) Southwestern Medical Centre
University of Texas at Dallas


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Newborn Hearing Screener
ALGO 7i
Gynecological Examination Chair
arco-matic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.