Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Machine-Learning Algorithm Diagnoses Cancer Early and Accurately

By HospiMedica International staff writers
Posted on 29 Aug 2019
A team of researchers from the University of Southern California (Los Angeles, CA, USA) used synthetic images to train a machine-learning algorithm that can assist in more quickly and correctly detecting breast cancer. More...
The researchers first created physics-based models that showed varying levels of key properties and then used thousands of data inputs derived from those models to train the machine-learning algorithm. These kinds of techniques become important in situations where data is scarce, such as in the case of medical imaging.

The researchers used about 12,000 synthetic images to train the machine-learning algorithm. By providing enough examples, the algorithm can glean different features inherent to a benign tumor versus a malignant tumor and make the correct determination. After achieving nearly 100% classification accuracy on other synthetic images, the researchers tested the algorithm on real-world images to determine its accuracy in providing a diagnosis and measured the results against biopsy-confirmed diagnoses associated with those images. The machine-learning algorithm achieved an accuracy rate of about 80% and is now being further refined by using more real-world images as inputs.

Based on the principles used for training the machine-learning algorithm for breast cancer diagnosis, the researchers are now looking to train the algorithm to better diagnose renal cancer through contrast-enhanced CT images. The researchers believe that machine-learning algorithms are unlikely to replace a radiologist’s role in determining diagnosis, but will instead serve as a tool for guiding radiologists to reach more accurate conclusions.

“The general consensus is these types of algorithms have a significant role to play, including from imaging professionals whom it will impact the most. However, these algorithms will be most useful when they do not serve as black boxes,” said Assad Oberai, Hughes Professor in the Aerospace and Mechanical Engineering Department at the USC Viterbi School of Engineering. “What did it see that led it to the final conclusion? The algorithm must be explainable for it to work as intended.”

Related Links:
University of Southern California


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Silver Member
ECG Management System
NEMS Web
Newborn Hearing Screener
ALGO 7i
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.