Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Ultrasound-Assisted Optical Imaging Could Replace Endoscopy

By HospiMedica International staff writers
Posted on 01 Aug 2019
A new study suggests that ultrasound could be used to optically image internal organs, potentially eliminating the need for invasive visual exams using endoscopic cameras.

Developed by researchers at Carnegie Mellon University (CMU; Pittsburgh, PA, USA), the new technique uses ultrasonic wave patterns to change the local density of the tissues so as to create a graded refractive index pattern in the direction of light propagation, which modulates the phase front of light. More...
Thus causes it to focus within the medium, effectively creating a virtual gradient index (GRIN) lens relay. The virtual GRIN lens can be moved around simply by reconfiguring the ultrasound wave patterns from outside the body, enabling the imaging of different target regions, all noninvasively.

The focal distance and the numerical aperture of the sculpted optical GRIN lens can also be tuned, by changing the ultrasonic wave parameters. The researchers demonstrate that the virtual GRIN lens can resolve small features (22 µm) even through a turbid medium (which is normally opaque), continuously scanning over a depth of 5.4 mm in the modulated medium. The researchers claim the technology could eventually be implemented in the form of a handheld device or wearable surface patch that images the brain or under the skin. The study was published on July 17, 2019, in Light: Science and Applications.

“Being able to relay images from organs such as the brain without the need to insert physical optical components will provide an important alternative to implanting invasive endoscopes in the body,” said co-lead author Maysam Chamanzar, PhD. “We used ultrasound waves to sculpt a virtual optical relay lens within a given target medium, which for example, can be biological tissue. Therefore, the tissue is turned into a lens that helps us capture and relay the images of deeper structures. This method can revolutionize the field of biomedical imaging.”

“Turbid media have always been considered obstacles for optical imaging, but we have shown that such media can be converted to allies to help light reach the desired target,” said co-lead author PhD student Matteo Giuseppe Scopelliti, MSc. “When we activate ultrasound with the proper pattern, the turbid medium becomes immediately transparent. It is exciting to think about the potential impact of this method on a wide range of fields, from biomedical applications to computer vision.”

GRIN lenses do not require an air gap to function since the operation of the lens is due to varying indices in the lens itself, rather than the difference in indices between the air and lens. Additionally, in a GRIN lens, all optical paths are the same due to the radially varying refractive index, in contrast to a spherical or aspheric lens.

Related Links:
Carnegie Mellon University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Premium Air-Mattress
MA-51
Radiology System
Riviera SPV AT
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.