We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Posthumous Brain MRI Produces Detailed 3D Images

By HospiMedica International staff writers
Posted on 24 Jul 2019
A 100-hour long magnetic resonance imaging (MRI) scan of an anonymous deceased patient has resulted in an unprecedented view of human brain anatomy.

Researchers at Massachusetts General Hospital (MGH; Boston, USA) undertook to build an ultra-high resolution MRI dataset of an ex-vivo human brain from a 58-year-old woman who had no history of neurological disease, and who died of non-neurological causes. More...
After fixation in 10% formalin, the brain specimen was imaged on a 7 Tesla MRI scanner at 100 µm isotropic resolution using a custom-built 31-channel receive array coil. Single-echo multi-flip Fast Low-Angle SHot (FLASH) data were acquired over 100 hours of scan time, at 25 hours per flip angle.

In all, the researchers recorded 8 terabytes of raw data from the four separate scan angles. The resulting dataset provides an unprecedented view of the 3D neuroanatomy of the human brain. To optimize the usefulness of the dataset, the researchers warped it into standard stereotactic space and distributed it to the academic community and the general public in both native and stereotactic space via multiple platforms. A study describing the preparation of the brain specimen and the MRI scanning process was published on May 31, 2019, in bioRxiv.

“Postmortem ex-vivo MRI provides significant advantages over in-vivo MRI for visualizing the microstructural neuroanatomy of the human brain. Whereas in-vivo MRI acquisitions are constrained by time and affected by motion, ex vivo MRI can be performed without time constraints and without cardiorespiratory or head motion,” concluded lead author Brian Edlow, MD, of the MGH departments of neurology and radiology, and colleagues. “We envision that this dataset will have a broad range of investigational, educational, and clinical applications that will advance understanding of human brain anatomy in health and disease.”

Related Links:
Massachusetts General Hospital


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Portable Jaundice Management Device
Nymphaea
External Defibrillator
HeartSave Y | YA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.