We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




IR Spectroscopy Improves Rheumatoid Arthritis Diagnosis

By HospiMedica International staff writers
Posted on 23 Jul 2019
A rapid, non-invasive technique to detect rheumatoid arthritis (RA) based on infrared (IR) light could help clinicians assess disease progression and monitor treatment effectiveness.

Developed at the University of Birmingham (UB; United Kingdom), the new RA scanner combines three-dimensional (3D) digital imaging with IR spectroscopy to create an image of the blood content inside a patients’ hand. More...
The patient first places a hand inside the scanner to create a 3D model by measuring its size and contours. Next, an IR beam is directed through each finger in turn, with the amount of IR light exiting it measured. The results indicate levels of absorbing chromophores such as oxyhaemoglobin, deoxyhaemoglobin, water, and lipids, which cause changes in scattering properties.

In RA, hyperplasia of stromal cells and infiltration of inflammatory cells into the synovium causes local pathophysiological changes, including lower oxygenation (hypoxia), increased blood vessel formation (synovial angiogenesis), and an increase in leukocyte and protein concentration, consequently altering the optical properties of an inflamed joint compared to a healthy one. In a pilot study involving 144 joints from 21 rheumatology patients, the researchers were able to accurately detect inflamed joints, with results closely matching diagnoses made using ultrasound and clinical examination. The study was published on June 20, 2019, in the Journal of Biomedical Optics.

“We know that diagnosing patients with RA early is really important, because early treatment leads to better long-term outcomes,” said senior author Professor Hamid Dehghani, PhD, a specialist in medical imaging at the UB School of Computer Science. “The system we have developed offers a low-cost, objective way of detecting the disease and potentially grading how advanced it is. We hope in time it will enable clinicians diagnose the disease earlier and offer personalized treatment plans for patients.”

In the modern rheumatology clinic, diagnosis is carried out through a combination of patient history, clinical examination, blood tests, questionnaires and medical imaging. But most imaging modalities are subject to specific disadvantages for detecting joint inflammation. Radiography suffers from low sensitivity to soft tissue changes, limiting its use for quantification of damage; and ultrasound and magnetic resonance imaging (MRI) require highly trained staff, leading to high cost and limited availability.

Related Links:
University of Birmingham


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
PACS Workstation
PaxeraView PRO
Isolation Stretcher
IS 736
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.