Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Phase-Contrast MRI Can Evaluate Artificial Heart Valve Function

By HospiMedica International staff writers
Posted on 10 Jul 2019
Radiation-free, non-invasive phase-contrast magnetic resonance imaging (MRI) can detect obstructions in bi-leaflet mechanical heart valves (BMHVs), according to a new study.

Researchers at Concordia University (Montreal, Canada) and Hashemite University (Zarqa, Jordan) conducted an experimental study using time-resolved planar particle image velocimetry in order to investigate flow characteristics in the ascending aorta in the presence of a dysfunctional BMHV. More...
The equipment used included a custom double-activation left heart duplicator, a high-speed camera, and a laser. Blood flow patterns resulting from six different heart valve blockages were simulated by photographing particles immersed in a liquid that mimics blood and pumping the fluid through the heart duplicator.

Several configurations of leaflet dysfunction were investigated, and the induced flow disturbances in terms of velocity fields, viscous energy dissipation, wall shear stress, and accumulation of viscous shear stresses were evaluated. The researchers also validated a new set of parameters, based solely on the analysis of the normalized axial velocity profiles in the ascending aorta, to detect BMHV dysfunction and differentiate between different leaflet configurations (clear of obstruction, partially obstructed, and fully obstructed).

The results showed that BMHV dysfunction leads to a complex spectrum of flow disturbances, with each flow characteristic evaluated having its own worst-case scenario, in terms of dysfunction configuration. The researchers suggest that a phase-contrast MRI approach based on the analysis of the normalized axial velocity profiles in the ascending aorta has the potential to discriminate not only between normal and dysfunctional BMHV, but also between the different leaflet dysfunction configurations. The study was published on May 8, 2019, in Artificial Organs.

“Imagine you are outside a stadium and the crowd is leaving from three gates next to each other. If the gates are open, you will see a uniform distribution of people leaving from all three openings,” explained senior author Professor Lyes Kadem, PhD, Concordia research chair for cardiovascular engineering and medical devices. “If one gate is closed, you will see more people leaving from the two others, and none from the one that is closed. Therefore, you will deduce that there is a blockage.”

Related Links:
Concordia University
Hashemite University


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
OR Table Accessory
Angular Accessory Rail
Critical Care Conversion Kit
Adapter+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.