Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New Deep-Learning Model Could Help Predict Lung Cancer Outcomes

By HospiMedica International staff writers
Posted on 03 May 2019
A team of researchers used serial image scans of tumors from patients with non-small cell lung cancer (NSCLC) to develop a new deep-learning model that predicted treatment response and survival outcomes better than standard clinical parameters.

Lung cancer is the most common cancer and the leading cause of cancer death worldwide, with NSCLC accounting for about 85% of all lung cancers. More...
The standard assessment for diagnosis and response to therapy for patients relies heavily on the measurement of maximum tumor diameter, which is susceptible to variations in interpretation between observers and over time.

In order to see if they could extract more predictive insights as cancers evolve, the researchers built deep-learning models. They transferred learning from ImageNet, a neural network created by researchers at Princeton University and Stanford University that identifies a wide range of ordinary objects from the most relevant features, and trained their models using serial CT scans of 179 patients with stage 3 NSCLC who had been treated with chemoradiation. They included up to four images per patient obtained routinely before treatment and at one, three, and six months after treatment for a total of 581 images.

The investigators analyzed the model's ability to make significant cancer outcome predictions with two datasets: the training dataset of 581 images and an independent validation dataset of 178 images from 89 patients with non-small cell lung cancer who had been treated with chemoradiation and surgery. The researchers found that the models' performance improved with the addition of each follow-up scan. The area under the curve, a measure of the model's accuracy, for predicting two-year survival based on pretreatment scans alone was 0.58, which improved significantly to 0.74 after adding all available follow-up scans. Patients classed as having low risk for mortality by the model had a six-fold improved overall survival as compared with those classed as having high risk. In comparison to the clinical model that utilizes parameters of stage, gender, age, tumor grade, performance, smoking status, and clinical tumor size, the deep-learning model was more efficient in predicting distant metastasis, progression, and local regional recurrence.

"Our research demonstrates that deep-learning models integrating routine imaging scans obtained at multiple time points can improve predictions of survival and cancer-specific outcomes for lung cancer," said Hugo Aerts, PhD, director of the Computational and Bioinformatics Laboratory at the Dana-Farber Cancer Institute and Brigham and Women's Hospital, and an associate professor at Harvard University. "Radiology scans are captured routinely from lung cancer patients during follow-up examinations and are already digitized data forms, making them ideal for artificial intelligence applications. Deep-learning models that quantitatively track changes in lesions over time may help clinicians tailor treatment plans for individual patients and help stratify patients into different risk groups for clinical trials."



Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Infant Incubator
OKM 801
Isolation Stretcher
IS 736
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.