Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




3D Ultrasound System Guides Gynecologic Brachytherapy

By HospiMedica International staff writers
Posted on 22 Apr 2019
A new study describes how a reconstructed three-dimensional (3D) ultrasound image can aid implant placement during interstitial gynecologic brachytherapy procedures.

Developed by researchers at Robarts Research Institute (RRI; London, Canada), Western University (London, Canada), and other institutions, the system is based on a combination of three scanning geometries - 3D transrectal US (TRUS), 360° 3D sidefire transvaginal US (TVUS), and 3D endfire TVUS. More...
The images are generated by rotating a standard endocavity ultrasound transducer through 170 degrees during a 12-20 seconds rotation, which provides a reconstructed 3D image immediately following acquisition.

During feasibility studies of needle placement, mean differences in needle positions of 3.82 mm and 2.36 mm for TRUS and sidefire TVUS, respectively, were found, when compared to clinical CT images. A proof-of-concept phantom study of the system in endfire TVUS mode demonstrated a mean positional difference of just 1.91 mm. In addition, an automatic needle segmentation tool was tested on a 360° 3D TVUS patient image, resulting in a mean angular difference of 0.44° and mean positional difference of 0.78 mm, compared to manually segmented needles. The study was presented at the SPIE medical imaging conference, held during February 2019 in San Diego (CA, USA).

“Access to high-end imaging systems like CT and MRI to diagnose and treat diseases is difficult in some places in the world. So for that reason, we've been focusing on ultrasound, which is widely available everywhere in the world and can be used for a variety of applications," said senior author Professor Aaron Fenster, PhD, of RRI. “This technology has potential to be practice-changing. The short-term goal is to reduce complication rates - ensure that the needles don't go into the bladder, or the rectum, which creates complications. In addition, if the needles are placed correctly they will provide an improved dose pattern distribution to the tumor and surrounding tissue.”

Brachytherapy is a radiotherapy regimen in which a radioactive source is placed directly into or next to an organ or tissue. During high-dose-rate (HDR) interstitial brachytherapy of gynecologic malignancies, precise placement of multiple needles is necessary to provide optimal dose to the tumor while avoiding overexposing nearby healthy organs, such as the bladder and rectum. Currently, brachytherapy needles are placed based on preoperative imaging and clinical examination, but there is no standard protocol for intraoperative image guidance.

Related Links:
Robarts Research Institute
Western University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Ultrasound System
FUTUS LE
Xenon Light Source
CLV-S400
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.