Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Radiomics Predicts Patient Benefits from Chemotherapy

By HospiMedica International staff writers
Posted on 04 Apr 2019
Data retrieved from computed tomography (CT) images may be able to forecast which lung cancer patients will respond to chemotherapy, claims a new study.

Researchers at Case Western Reserve University (CWRU; Cleveland, OH, USA), the Cleveland Clinic (CC; OH, USA), and other institutions retrospectively analyzed data from 125 patients with non–small cell lung cancer (NSCLC) who had been treated with pemetrexed-based platinum doublet chemotherapy, in order to identify the role of radiomics texture features--both within and outside the nodule--in predicting time to progression (TTP), overall survival (OS), and response to chemotherapy.

The patients were divided randomly into two sets, with the constraint that there were an equal number of responders and nonresponders in the training set. More...
The training set comprised 53 patients with NSCLC, and the validation set comprised 72 patients. A machine learning classifier trained with radiomic texture features extracted from intra- and peritumoral regions of non–contrast-enhanced CT images was used to predict response to chemotherapy. The radiomic risk-score signature was generated by using least absolute shrinkage and selection operator, and association of the radiomic signature with TTP and OS was also evaluated.

The results showed that radiomic features derived from within the tumor and from the area around the tumor were able to distinguish between patients who responded to chemotherapy and those who did not with an accuracy of 0.77. In addition, the radiomic features predicted TTP and OS, and decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics signature had a higher overall net benefit in prediction of high-risk patients to receive treatment than clinical-pathologic measurements. The study was published on March 20, 2019, in Radiology: Artificial Intelligence.

“This is the first study to demonstrate that computer-extracted patterns of heterogeneity, or diversity, from outside the tumor were predictive of response to chemotherapy,” said co-lead author Monica Khunger, MD, of the CC. “This is very critical because it could allow for predicting in advance of therapy which patients with lung cancer are likely to respond or not. This could help identify patients who are likely to not respond to chemotherapy for alternative therapies such as radiation or immunotherapy.”

Radiomics is an extension of computer-aided diagnosis, and refers to the comprehensive quantification of tumor phenotypes by extracting a large number of quantitative image features for data mining and precision medicine. In recent years radiomics has successfully extracted a variety of clinically relevant features, merging them into signatures, in order to estimate the probability of malignancy of identified breast cancer lesions.

Related Links:
Case Western Reserve University
Cleveland Clinic


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Medical Monitor
SILENIO D
Newborn Hearing Screener
ALGO 7i
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.