Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Machine Learning Method Can Help Women Avoid Unnecessary Breast Surgery

By HospiMedica International staff writers
Posted on 19 Mar 2019
A team of researchers from the Geisel School of Medicine at Dartmouth (Hanover, NH, USA) has developed a machine learning method to predict atypical ductal hyperplasia (ADH) upgrade to cancer.

ADH, a breast lesion associated with a four- to five-fold increase in the risk of breast cancer, is mainly found using mammography and identified on core needle biopsy. More...
Despite multiple passes of the lesion during biopsy, only portions of the lesions are sampled. Other variable factors influence sampling and accuracy such that the presence of cancer may be underestimated by 10-45%. Currently, surgical removal is recommended for all ADH cases found on core needle biopsies to determine if the lesion is cancerous. About 20-30% of ADH cases are upgraded to cancer after surgical excision. However, this means that 70-80% of women undergo a costly and invasive surgical procedure for a benign (but high-risk) lesion.

The new machine learning method to predict ADH upgrade to cancer can potentially help clinicians and low-risk patients decide whether active surveillance and hormonal therapy is a reasonable alternative to surgical excision. An evaluation of the model by the researchers showed that the machine learning approach can identify 98% of all malignant cases prior to surgery while sparing from surgery 16% of women who otherwise would have undergone an unnecessary operation for a benign lesion. The researchers now plan to expand the scope of their model by including other high-risk breast lesions such as lobular neoplasia, papillomas, and radial scars. They also plan on further validating their approach on large external datasets using state and national breast cancer registries, and collaborating with other medical centers.

"Our results suggest there are robust clinical differences between women at low versus high risk for ADH upgrade to cancer based on core needle biopsy data that allowed our machine learning model to reliably predict malignancy upgrades in our dataset," said Saeed Hassanpour, PhD, who led the Dartmouth research team. "This study also identified important clinical variables involved in ADH upgrade risk."

"Our model can potentially help patients and clinicians choose an alternative management approach in low-risk cases," added Hassanpour. "In the era of personalized medicine, such models can be desirable for patients who value a shared decision-making approach with the ability to choose between surgical excision for certainty versus surveillance to avoid cost, stress, and potential side effects in women at low risk for upgrade of ADH to cancer."

Related Links:
Geisel School of Medicine at Dartmouth


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Imaging Table
Stille imagiQ2
Infrared Digital Thermometer
R1B1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.