Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Imaging Shows Radiation Resistance in Tumor Microenvironment

By HospiMedica International staff writers
Posted on 18 Mar 2019
Noninvasive Raman spectroscopy could spare some patients the toxic side effects of ineffective radiation therapy (RT), claims a new study.

Researchers at Johns Hopkins University (JHU; Baltimore, MD, USA) and the University of Arkansas (Fayetteville, USA) conducted a study to map radiation-induced biomolecular changes in tumors, and uncover the latent micro-environmental differences between RT-resistant and RT-sensitive tumors. More...
To do so, the researchers cultured human head and neck squamous cell carcinoma (HNSCC) cell lines to grow tumor xenografts in mice, and then measured the molecular specificity and quantitative nature of Raman spectroscopic tissue assessments.

Labe-free Raman spectra obtained from untreated and treated tumors were subjected to chemometric analysis in order to quantify biomolecular differences in the tumor microenvironment. The results revealed statistically significant differences in lipid and collagen content that could potentially identify treatment-resistant tumors early on in the therapeutic regimen. Histological evaluation of the tumors was consistent with the Raman spectroscopic results. The study was published on February 28, 2019, in Cancer Research.

“Identifying patients with radiation-resistant tumors prior to commencing treatment or immediately after it has begun would significantly improve response rates and help these patients avoid the toxic side effects of ineffective radiation therapy,” said biomedical engineer Narasimhan Rajaram, PhD, of the University of Arkansas. “Our findings provide a rationale for translating these studies to patients with this as the ultimate goal.”

Raman spectroscopy is a form of molecular spectroscopy based on Raman scattering. When a beam of light interacts with a material, part of it is transmitted, part it is reflected, and part of it is scattered; over 99% of the scattered radiation has the same frequency as the incident beam, but a small portion of the scattered radiation has frequencies different from that of the incident beam. The scattered radiation contains information on the particular atoms or ions that comprise the molecule, the chemical bonds connect them, the symmetry of their molecule structure, and the physico-chemical environment where they reside.

Related Links:
Johns Hopkins University
University of Arkansas


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
Medical Monitor
SILENIO D
Isolation Stretcher
IS 736
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.