Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




High-Resolution Microscopy Method Rapidly Maps the Brain

By HospiMedica International staff writers
Posted on 30 Jan 2019
A new three-dimensional (3D) imaging technique can locate individual neurons, trace connections between them, and visualize organelles inside neurons, according to a new study.

The technique, developed at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), the University of California (UC, Berkeley, USA), the Howard Hughes Medical Institute (HHMI; Ashburn, VA, USA), and other institutions, combines expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across entire sections of the brain.

For the study, the researchers imaged the Drosophila fly brain, including synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. More...
The researchers were able to compute the thickness of the myelin coating in different segments of axons, and measured the gaps between stretches of myelin. The technology can also be used to image tiny organelles inside neurons, such as mitochondria and lysosomes. The study was published on January 17, 2019, in Science.

“The marrying of the lattice light-sheet microscope with expansion microscopy is essential to achieve the sensitivity, resolution, and scalability of the imaging that we're doing. Using this technique, it is possible to analyze millions of synapses in just a few days,” said lead author Ruixuan Gao, PhD, of MIT. “We counted clusters of postsynaptic markers across the cortex, and we saw differences in synaptic density in different layers of the cortex. Using electron microscopy, this would have taken years to complete.”

“This technique allows researchers to map large-scale circuits within the brain while also offering unique insight into individual neurons' functions,” said senior author Professor Edward Boyden, PhD, of the MIT Institute for Brain Research, Media Lab, and the Koch Institute for Integrative Cancer Research. “A lot of problems in biology are multiscale. Using lattice light-sheet microscopy, along with the expansion microscopy process, we can now image at large scale without losing sight of the nanoscale configuration of biomolecules.”

Expansion microscopy starts with a preserved specimen, such as a thin slice of tissue. It is infused with an absorbent polymer that expands the sample tissue fourfold. The process also turns the sample nearly transparent, which makes it particularly well-suited for the lattice light-sheet microscope, which shines light from one side and takes a picture from the other side. According to the researchers, the technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.

Related Links:
Massachusetts Institute of Technology
University of California
Howard Hughes Medical Institute


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Exam Table
PF400
Portable Jaundice Management Device
Nymphaea
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.