Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Breakthrough Technique Stops Irregular Heartbeats

By HospiMedica International staff writers
Posted on 09 Jan 2025

When the heart experiences irregular beats, it cannot pump blood effectively. More...

This condition, known as fibrillation, is often treated with defibrillation, a powerful electric shock that resets the heart’s rhythm. Researchers have now made a significant discovery that could improve how doctors address dangerous heart rhythms, such as those seen during cardiac arrest. Their work provides a better understanding of how to stop the irregular electrical waves in the heart, a process called quenching. This innovative research could improve the efficiency of defibrillation treatments.

The new study, led by researchers at Durham University (Durham, UK), focuses on predicting the minimal electrical interventions required to stabilize these chaotic waves. By targeting the specific areas of the heart affected by irregular signals, this technique could result in less invasive and more energy-efficient treatments. The team developed a mathematical model that uses less computational power to predict the amount of energy needed to stop the unstable waves. Traditional methods rely on complex simulations, but this new approach can determine the right energy levels through simpler calculations. The researchers tested their predictions using real-world models of the heart's electrical activity, and the results, published in Physical Review E, showed that their method works across various scenarios, offering a reliable and flexible tool.

While quenching requires more energy than initiating a wave, the new technique could still reduce the overall energy needed for defibrillation, thereby minimizing the risk of side effects like tissue damage. This breakthrough could help refine current defibrillation methods, including newer techniques such as Low-Energy Atrial Pacing (LEAP). These advancements aim to make life-saving treatments both safer and more efficient for patients. To further promote research in this field, the team has made their data and code publicly available, encouraging collaboration among scientists and healthcare providers. The study's findings mark an important advancement in the understanding and treatment of irregular heartbeats.


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Electrode Solution and Skin Prep
Signaspray
Autoclave
Advance
PACS Workstation
PaxeraView PRO
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.