We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Gel-Based Stretchable Triboelectric Nanogenerators to Revolutionize Wearable Technology

By HospiMedica International staff writers
Posted on 20 Dec 2024

Wearable technology, ranging from fitness trackers and smartwatches to medical sensors worn on the body, is revolutionizing our interaction with technology. More...

As these devices gain in popularity, triboelectric nanogenerators (TENGs), which convert mechanical energy, such as body movement, into electrical energy, offer a way to power them without the need for batteries. Most TENGs in wearable applications use a triboelectric material attached to an electrode that conducts electrical current. However, one of the challenges has been finding flexible electrode materials that can move naturally with the human body. To solve this, researchers have developed a gel polymer electrode-based triboelectric nanogenerator (GPE-TENG). This device, described in research published in the Chemical Engineering Journal, is stretchable, semi-transparent, and durable, making it ideal for use in wearable sensor applications.

The research team from Dongguk University (Seoul, Republic of Korea) fabricated the device by pouring a gel mixture of polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) into an ecoflex mold. The gel is evenly spread and covered with another layer of ecoflex. A copper wire is connected to the gel to allow for electrical flow, and the entire assembly is cured at 70°C for 12 hours, ensuring a strong bond between the gel and the ecoflex layers. The resulting device is durable, flexible, and semi-transparent, generating electrical signals when tapped or stretched, with a peak power output of 0.36 W/m² at a load of 15 MΩ. During testing, the device was able to stretch up to 375% of its original size without damage, and it endured two months of bending, twisting, folding, and stretching without any signs of delamination or performance loss. As wearable technology becomes increasingly integral to daily life, the GPE-TENG could enable devices that monitor joint activity for rehabilitation or function as biometric systems in clothing, potentially allowing users to unlock smart doors or lockers.

“This work could revolutionize wearable technology by developing sustainable and flexible electronic devices with promising applications in human healthcare, rehabilitation, security systems, and secure biometric authentication systems,” said Professor Jung Inn Sohn from Dongguk University who led the research team.


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Infant Incubator
OKM 801
Infrared Digital Thermometer
R1B1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.