We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Injectable Hydrogel Electrodes Offers Ground-Breaking Treatment Regimen for Arrhythmia

By HospiMedica International staff writers
Posted on 10 Jan 2024

Ventricular arrhythmia, a serious heart condition occurring in the lower chambers or ventricles, is a primary cause of sudden cardiac death. More...

This condition involves a self-sustained heart rhythm abnormality known as re-entrant arrhythmia, which can be life-threatening. Currently, arrhythmias are treated with medications and procedures aimed at regulating irregular heartbeats. However, the available anti-arrhythmic drugs are not always effective and can sometimes exacerbate re-entrant arrhythmia by slowing conduction velocity. Additionally, these drugs can be toxic and may harm tissues near the heart's diseased areas. Interventional ablation therapies, though widely used, see arrhythmia recurrence in a significant number of patients and don't address the re-entry mechanism. Implanted cardiac defibrillators, designed to offset these limitations, can be painful when delivering electric shocks to normalize heart rhythm, impacting patient quality of life. Untreated, arrhythmia can harm the heart and other organs, potentially leading to stroke or cardiac arrest.

The need for an effective therapeutic regimen for ventricular arrhythmia encouraged researchers at the Texas Heart Institute (THI, Houston, TX, USA) to develop an innovative treatment approach specifically targeting the pathophysiology of re-entrant arrhythmia. In a breakthrough study, the researchers have demonstrated the design and feasibility of a new hydrogel-based pacing modality, setting the foundation for a ground-breaking treatment regimen for treating ventricular arrhythmia. The hydrogels, known for their biostability, biocompatibility, and tunable properties, are being investigated as potential electrodes that can be efficiently delivered into coronary veins while avoiding ischemia. Re-entrant arrhythmia often originates from delayed conduction in scarred heart tissues following coronary artery occlusion, typically during a heart attack. This can be remedied by pacing these areas.

The THI researchers have designed hydrogels that can reach scarred tissues, thus allowing direct pacing of heart regions that are otherwise hard to access. Once injected into targeted vessels, these conductive hydrogels adapt to the patient's vessel shape. Integrating these gels with a conventional pacemaker enables pacing that imitates the heart's natural electrical rhythm, effectively neutralizing the arrhythmia source and offering pain-free defibrillation. This innovative hydrogel technology was successfully tested through minimally invasive catheter delivery in a pig model. The study is the first to demonstrate the ability to directly electrically stimulate both native and scarred mid-myocardium using injectable hydrogel electrodes as a pacing modality. By combining this with standard pacemaker technology and minimally invasive delivery methods, the study demonstrates the viability of a new pacing approach that mimics the heart's natural electrical rhythm. This could potentially eliminate lethal re-entrant arrhythmias and provide painless defibrillation while integrating smoothly into clinical practice. This significant scientific breakthrough, particularly in terms of pain management for patients with heart, lung, and blood diseases, could transform the management of cardiac rhythms.

Related Links:
THI


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Digital X-Ray Detector Panel
Acuity G4
Silver Member
ECG Management System
NEMS Web
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.