Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Swimming Nanorobots Could Provide Targeted Drug Delivery

By HospiMedica International staff writers
Posted on 15 Jul 2015
Nano-sized swimmer robots that move in an S-like, undulatory motion could move easily through body fluids to deliver drugs to their targets.

Developed by researchers at ETH Zurich (Switzerland) and the Israel Institute of Technology (Technion; Haifa, Israel), the magnetic nanoswimmers are made of composite, multilink nanowire-based chains with a diameter of 200 nm that move in an undulatory motion when influenced by an oscillating magnetic field. More...
The design includes three links; one is an elastic, polypyrrole (Ppy) tail, and the other two are rigid magnetic nickel links. All three are inter-connected by flexible polymer bilayer hinges.

The researchers placed the nanorobots into a viscous fluid that was even thicker than blood. When they applied the oscillating magnetic field, the nanoswimmers moved at a speed of nearly one body length per second. According to the researchers, these specialized swimming strategies provide efficient locomotion for the nanorobots, with an added benefit of the magnetic field being that it can be used to direct the swimmers towards their targets. The study was published on June 1, 2105, in Nano Letters.

“Prior research has focused on designs mimicking the rotary corkscrew motion of bacterial flagella or the planar beating motion of eukaryotic flagella. These biologically inspired designs are typically of uniform construction along their flagellar axis,” said lead author Bumjin Jang, MSc, of the ETH institute of robotics and intelligent systems. “The multilink design exhibits a high swimming efficiency. Furthermore, the manufacturing process enables tuning the geometrical and material properties to specific applications.”

Tiny robots could have many benefits for patients. For example, they could be programmed to specifically wipe out cancer cells, which would lower the risk of complications, reduce the need for invasive surgery, and lead to faster recoveries.

Related Links:

ETH Zurich
Israel Institute of Technology



Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Medical Monitor
SILENIO D
Pulmonary Ventilator
OXYMAG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.