We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New Radiotherapy Technique for Brain Cancer

By HospiMedica staff writers
Posted on 16 Jan 2006
Of the about 12,000 individuals who are diagnosed with glioblastoma multiforme (GBM), a type of brain cancer, yearly in the United States, 50% will die within one year, and the remainder within three years. More...
Because of this, scientists are searching to find better therapies to stop or slow GBM.

At present, the only treatments that lengthen survival rates are very invasive surgeries to remove the tumor and radiation treatment with the maximum tolerated dose--all of which leads to a devastatingly low quality of life. In the January 1, 2006, issue of the journal Clinical Cancer Research, Dr. Gelsomina De Stasio, professor of physics at the University of Wisconsin-Madison (USA) and coworkers, reported on their study utilizing a new radiotherapy technique for combating GBM with the element gadolinium. This application may soon lead to less-invasive treatment and even possibly a cure of this disease.

"It's the most lethal cancer there is. The only good thing about it is that, if left untreated, death is relatively quick and pain-free, since this tumor does not form painful metastases in other parts of the body,” stated Dr. De Stasio. The therapy, called gadolinium synchrotron stereotactic radiotherapy (GdSSR), requires a gadolinium compound to find tumor cells and infiltrate them, down into their nuclei, while sparing the normal brain. Then, the patient's head is irradiated with x-rays. For these x-ray photons the whole brain is transparent, while gadolinium is opaque. Then, where gadolinium is localized--in the nuclei of the cancer cells only--what is known as "the photoelectric effect” occurs.

"Exactly 100 years after Einstein first explained this effect, we have found a way to make it useful in medicine,” Dr. De Stasio reported. "In this effect, atoms absorb photons and emit electrons. The emitted electrons are very destructive for DNA, but have a very short range of action. Therefore, to induce DNA damage that the cancer cells cannot repair, and consequently cell death, gadolinium atoms must be localized in the nuclei of cancer cells.”

Dr. De Stasio, the first to introduce this technique into the biologic and medical fields, is working to develop the therapy to treat GBM. In the current study, she and coworkers established that gadolinium reaches more than 90% of the cancer cell nuclei, using four different kinds of human glioblastoma cells in culture.

Dr. De Stasio developed and oversees the X-ray PhotoElectron Emission SpectroMicroscopy (X-PEEM) program at UW Madison's SRC, where she also serves as interim scientific director. The technology needed for eventual treatment would involve miniature synchrotron light sources, which could be similar in size and cost to an MRI machine.




Related Links:
University of Wisconsin-Madison

Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Portable Jaundice Management Device
Nymphaea
OR Table Accessory
Angular Accessory Rail
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.