Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Origami-Inspired Stretchable Strain Sensors to Find Application in Wearables and Implantables

By HospiMedica International staff writers
Posted on 05 Sep 2023

Existing stretchable strain sensors often rely on soft materials like rubber. More...

However, these materials can undergo irreversible changes in their properties with repeated use, leading to unreliable deformation measurements. The challenge is to develop sensors that can stretch significantly, respond rapidly, and provide accurate readings even when dealing with substantial and dynamic deformations. In response, researchers have turned to an origami-inspired solution to create novel sensors that could potentially find applications in detecting organ deformations, wearables, and soft robotics.

Researchers at the University of Southern California (USC, Los Angeles, CA, USA) have introduced a new structure for the sensors after drawing inspiration from origami. Their innovative design allows the folding of more rigid materials with electrodes on both sides of the panel (imagine the sensor as an open book with electrodes on the front and back covers). As the electrodes unfold, they measure the strength of the electrical field between them. The team has developed a model that translates this measurement into a value that captures the extent of the deformation. These sensors can be attached to moving soft structures—ranging from the mechanical tendons of prosthetic limbs to the pulsating tissues of human internal organs—to monitor shape changes and proper function without the need for cameras.

The newly devised sensors can stretch up to three times their original size while maintaining high sensing accuracy even after repeated usage. Moreover, these sensors exhibit rapid responsiveness, detecting deformations in less than 22 milliseconds within very small areas (about 5 square millimeters). Furthermore, they can identify strains from various directions. Due to their capacity to precisely measure extensive, intricate, and fast deformations, these sensors offer numerous possibilities for practical implementation in wearable electronics, prosthetics, and robotics. They can find applications in tracking the movements of soft robots, monitoring human joint motions, or even observing organs such as the bladder to identify abnormalities indicative of disease. While initially designed for controlling soft robotics—ranging from delicate robotic grippers to snake-like surveillance devices—these sensors are also suitable for innovations in biomedicine.

“We can apply these sensors as wearable or implantable biomedical devices for healthcare monitoring,” explained Hangbo Zhao who led the research group. “For example, tracking the movement and flexibility of our skin or our joints. There’s also high demand for developing implantable sensors that can continuously monitor the functional status of internal organs that undergo cyclic expansion and contraction.”

Related Links:
University of Southern California 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
External Defibrillator
HeartSave Y | YA
Xenon Light Source
CLV-S400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.