Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Opioid Antidote Device Automatically Reverses Overdoses

By HospiMedica International staff writers
Posted on 28 Aug 2019
A new study describes how a low-cost, subcutaneous wearable device can detect opioid overdose and trigger an emergency delivery of naloxone.

Developed at Purdue University (Lafayette, IN, USA), the Wearable Opioid Antidote Device is comprised of an adhesive sensor on the chest that measures respiration and heart rate and extracts the heart rate, a micro controller in an armband that receives the signal from the monitor patch, and a subcutaneously placed delivery device that is activated using an externally applied time varying magnetic field. More...
Once an overdose-induced respiratory failure is detected, the device is activated, triggering an alternating magnetic field that generates heat to melt the capsule and release the drug.

A bench-top evaluation showed that the device can release 1.9 mg of powdered drug within 60 seconds, and up to 8.8 mm during a ten minute session. According to the researchers, the device can stabilize a user within 10 seconds, giving those who overdose alone, or who are left incapacitated, enough time to receive medical attention. The researchers also plan to build a communications system into the device that would automatically alert emergency services when the patient has overdosed. The study was published in the July 2019 issue of the Journal of Controlled Release.

“The idea is to be able to measure the rate of respiration using a wearable sensor and then be able to use that as a threshold to trigger the release of the antidote that's going to be implanted underneath the skin,” said senior author biomedical engineer Hyowon Lee, PhD. “The antidote is always going to be with you. The device wouldn't require you to recognize that you're having an overdose or to inject yourself with naloxone, keeping you stable long enough for emergency services to arrive.”

Naloxone is used to counter the effects of opioid overdose, for example heroin or morphine, and is specifically used to counteract life-threatening depression of the central nervous system (CNS) and respiratory system. It has been used for more than 40 years for reversal of respiratory depression due to opioid overdose, but has been primarily used by emergency medical services in injection form.

Related Links:
Purdue University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Electrode Solution and Skin Prep
Signaspray
Critical Care Conversion Kit
Adapter+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.