Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Machine Learning Could Reduce Hospitalizations by 30% During Pandemic

By HospiMedica International staff writers
Posted on 18 Sep 2024

During the COVID-19 pandemic, healthcare systems were pushed to their limits, and many facilities relied on a first-come, first-served approach or a patient's medical history to determine who received treatment. More...

However, these methods often fail to consider the complex interactions between medications and patients, potentially overlooking those who could benefit the most from treatment. Now, new research suggests that machine learning may be a more effective way to allocate scarce treatments to vulnerable patients during public health crises.

The new study by researchers at the University of Colorado Anschutz Medical Campus (Aurora, CO, USA) highlights the potential of machine learning to more efficiently allocate medical treatments in times of shortage, such as during a pandemic. The research demonstrated that machine learning, by analyzing how different patients respond to treatment, can provide more accurate, real-time information to doctors, health systems, and public health officials than traditional allocation methods. Published in JAMA Health Forum, the study revealed that using machine learning to allocate COVID-19 treatments could reduce hospitalizations by about 27% compared to current practices.

The researchers specifically examined the use of a novel method based on Policy Learning Trees (PLTs) to optimize the distribution of COVID-19 neutralizing monoclonal antibodies (mAbs) during periods of limited availability. The PLT approach was designed to prioritize treatments for individuals most at risk of hospitalization, maximizing overall benefit by factoring in variables that influence treatment effectiveness. The machine learning model was compared to real-world allocation decisions and a standard point-based system used during the pandemic. The results showed that the PLT-based model significantly reduced expected hospitalizations compared to both observed allocations and the Monoclonal Antibody Screening Score, a commonly used tool during the pandemic. The researchers hope their findings will encourage public health agencies, policymakers, and disaster management organizations to explore machine learning as a tool for future public health crises, ensuring that treatments are allocated more effectively when resources are limited.

“Existing allocation methods primarily target patients who have a high-risk profile for hospitalizations without treatments. They could overlook patients who benefit most from treatments,” said Mengli Xiao, PhD, an assistant professor in Biostatistics and Informatics, who developed the mAb allocation system based on the machine learning. “We developed a mAb allocation point system based on treatment effect heterogeneity estimates from machine learning. Our allocation prioritizes patient characteristics associated with large causal treatment effects, seeking to optimize overall treatment benefits when resources are limited.”


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Medical Monitor
VITALMAX 4100SL
Spirometry & Oximetry Software
MIR Spiro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.