Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Wheeze-Counting Wearable Device Monitors Patient's Breathing In Real Time

By HospiMedica International staff writers
Posted on 26 Apr 2024

Lung diseases like asthma, chronic obstructive pulmonary disease (COPD), lung cancer, bronchitis, and infections such as pneumonia, rank among the leading causes of death worldwide. More...

Traditionally, medical professionals diagnose these conditions by listening to a patient's breathing using a stethoscope to detect abnormal sounds like wheezing or crackling, which are common indicators of many lung and respiratory diseases. This diagnostic method demands significant expertise, and misinterpreting these sounds can result in incorrect diagnoses. Researchers have now developed an artificial intelligence (AI) algorithm that continually monitors a patient’s breathing and issues early medical alerts for potential asthma attacks or other respiratory issues.

Developed by a team at the University of Texas at Dallas (Richardson, TX, USA), this algorithm monitors a patient’s breathing in real time and analyzes the frequency of wheezes. This enhances the monitoring of lung sounds for symptom prevention, early detection of respiratory diseases, and symptom alleviation. The research team trained their deep-learning model using a dataset comprising 535 respiration cycles from various patient data sources to identify breathing patterns indicative of asthmatic symptoms. This innovative wheeze counter is poised to transform the approach to predicting lung diseases based on long-term breathing patterns.

The challenge in a clinical setting is continuously monitoring the pattern and frequency of abnormal lung sounds over extended periods, which is currently impractical. The algorithm developed addresses this by not only identifying abnormal sounds in each breath but also by capturing a comprehensive set of data that includes atypical breathing patterns. The next step for the researchers is to integrate this technology into a wearable device, allowing for its use in both clinical and non-clinical settings to facilitate on-the-go detection and remote medical interventions. Going forward, the team aims to combine real-time air pollution readings with real-time breathing sound analysis into a single wearable device to offer continuous monitoring of respiratory health.

“We developed the deep-learning algorithm to detect automatically whether someone’s breathing is problematic. When someone is wheezing, the algorithm will count the number of incidences and analyze their timing,” said Dr. Dohyeong Kim, a University of Texas at Dallas researcher. “Our wheeze-counting method is straightforward yet effective, with potential for expansion into automatic symptom monitoring. This could be crucial in predicting the onset or severity of future abnormalities, as well as detecting current symptoms.”

Related Links:
University of Texas at Dallas


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Spirometry & Oximetry Software
MIR Spiro
Morcellator
TCM 3000 BL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.