We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Millimeter-Scale, Chip-Less and Battery-Less Implant Wirelessly Monitors Health Parameters

By HospiMedica International staff writers
Posted on 21 Mar 2024

Implantable sensors are capable of directly interfacing with different organs accurately evaluating an individual’s health status. More...

However, deriving signals from such sensors primarily requires transcutaneous wires, integrated circuit chips, or cumbersome readout equipment. All this raises the risks of infection, reduces biocompatibility, or limits portability. Now, scientists have developed a set of millimeter-scale, chip-less, and battery-free magnetic implants paired with a fully integrated wearable device for measuring biophysical and biochemical signals.

The millimeter-scale, chip-less, and battery-less implant developed by scientists from Peking University (Beijing, China) allows for the wireless monitoring of various health indicators without the need for wires that penetrate the skin, integrated circuit chips, or large, bulky reading devices. This new approach minimizes the risk of infection, enhances biocompatibility, and significantly improves the ease of carrying the monitoring equipment. The system consists of millimeter-sized, chip-less, and battery-less magnetic implants that communicate wirelessly with a wearable device worn on the skin. This wearable device triggers vibrations in the magnetic implants and then captures the resulting motion. The movement of the implants provides accurate information about the biophysical state around the implants and the concentration of certain biochemicals, depending on how the implant's surface has been modified.

In tests conducted on rats, this system was able to measure vital health parameters such as the viscosity of cerebrospinal fluid, intracranial pressure, and glucose levels effectively. Its compact design opens up possibilities for the continuous, wireless monitoring of a wide range of biophysical and biochemical states within living organisms. This system's adaptability means it can be used to monitor various important health metrics throughout the body. This includes cardiovascular measurements such as blood pressure and blood viscosity, dental and orthopedic pressures, abdominal pressure, and even the distribution of molecules and cells within the body. This versatility heralds a new era in diagnosing, treating, and managing a broad spectrum of acute and chronic diseases.

The development of these tiny magnetic implants represents a significant advancement in health monitoring technology, potentially revolutionizing medical practices. With further development, this technology could significantly improve healthcare standards, empowering individuals to manage their health with an unprecedented level of precision and convenience. However, the long-term stability and biocompatibility of the magnetic implants pose challenges that need to be addressed through further research and development. Despite these challenges, ongoing advancements in technology and further explorations in research are expected to effectively tackle these issues.

“Our miniaturized system presents exciting possibilities for advancing health monitoring,” said Han Mengdi from Peking University, the lead researcher of this project. “By inserting a tiny magnetic implant into the body, it can provide a rich set of real-time data related to your health status. We aim to use such magnetic implants to enhance the way we monitor and manage health.”

Related Links:
Peking University


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Cardiograph Device
PageWriter TC35
X-Ray System
Leonardo DR mini III
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.