Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Novel Endoscopic Sensor System Measures Faulty Gut Electrical Signals for Detection of GI Disorders

By HospiMedica International staff writers
Posted on 08 Mar 2024

Just as irregular electrical signals in the heart can cause serious cardiac issues, researchers have known that faulty bioelectric patterns in the gut can lead to symptoms like stomach pain, nausea, vomiting, and bloating. More...

Diagnosing these issues is challenging for physicians because the electrical signals in the gut are weaker and harder to measure than those in the heart, and typically, identifying a 'dysrhythmic' gut requires invasive surgery. However, a significant breakthrough has been achieved with the development of an endoscopic sensor device that could allow doctors to diagnose hard-to-identify stomach complaints without the need for invasive surgery.

Approximately a third of patients who seek medical help for gut-related symptoms exhibit some kind of electrical abnormality. Conditions such as 'functional dyspepsia', stomach issues with no apparent structural cause, affect between 5% and 11% of the population. These patients often endure a long journey toward a proper diagnosis, with some even being mistakenly referred to psychiatrists under the assumption that their symptoms are psychosomatic. Historically, since the early 1900s, it has been understood that the gut is governed by electrical signals, similar to the heart. Recent scientific efforts have focused on understanding these faulty gut electrics, but initial studies were hampered by the need for open surgery to place electrodes on the stomach's exterior due to the gut's weak electrical signals. The endoscopic mapping device, developed more than a decade ago by scientists at the University of Auckland (Auckland, New Zealand), aims to give clinicians a clearer picture of exactly where the electrical signals are misfiring.

This innovative device features an inflatable sphere covered with sensors that are passed down the esophagus, enabling the measurement of gut electrical activity. While it may take up to five more years for this endoscopic device to become globally available in hospitals, the recent human studies mark a critical first step. Initial results from 13 patients have been published, and additional promising data from 35 patients have been gathered since. The next phase involves using data from these clinical studies to refine the device's design, particularly enhancing the filtering of electrical signals. This improvement aims to separate gut signals from external 'noise' such as equipment vibrations or movement around the patient. Although the team has successfully isolated stomach signals from this noise, further refinement is anticipated to enhance this capability.

“This is a critical step, taking us from engineering and pre-clinical work to real patients,” said University of Auckland gastrointestinal researcher Dr. Tim Angeli-Gordon, the head of the team which has developed the endoscopic sensor device. “It’s very difficult to do, but this is the dream; the pinnacle of bioengineering.”

Related Links:
University of Auckland


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
PACS Workstation
PaxeraView PRO
Cardiograph Device
PageWriter TC35
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.