We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




NIR Laser Helps Identify Heart Attack and Stroke Risk

By HospiMedica International staff writers
Posted on 29 Aug 2017
A new study suggests that near-infrared (NIR) autofluorescence imaging could aid early detection of high-risk atherosclerotic plaques and intra-plaque hemorrhage.

In a study at Monash University (Melbourne, Australia), the University of Warwick (Coventry, United Kingdom), and other institutions, researchers found that heme degradation products--particularly bilirubin--can be detected by increasing the wavelength of infrared (IR) illumination--currently used to detect fatty deposit build-up in arteries--to NIR wavelengths. More...
In a mouse model, fluorescence emission computed tomography (CT) detected the NIR autofluorescence of heme products and intra-plaque bleeding via Raman spectroscopy.

Heme by-products, especially bilirubin, were only observed in unstable plaques with internal bleeding, and were not observed in the more stable fatty deposits. Similar results were seen when the researchers examined human carotid endarterectomy (CEA) specimens collected from patients who presented to the Alfred Hospital (Melbourne, Australia). According to the researchers, the improved selectivity for high-risk atherosclerotic deposits could help doctors to identify the most at-risk patients. The study was published on July 13, 2017, in Nature Communications.

“We realized when we shine a light in the near-infrared wavelength range, that this light is reflected at a certain wavelength. So in a way we can use laser light to shine up the plaques that are unstable, and it's very characteristic,” said senior author Karlheinz Peter, MD, of Monash University. “After further investigation with clinical trials, this method of imaging technique could be used to assess unstable fatty arterial plaques, and could be used to monitor the effectiveness of the drugs used to prevent heart attacks or strokes.”

Bilirubin is the yellow pigmented breakdown product of normal heme catabolism, caused by the body's clearance of aged red blood cells (RBCs), which contain hemoglobin. It is excreted in bile and urine, and elevated levels may indicate certain diseases. Bilirubin is responsible for the yellow color of bruises and the yellow discoloration in jaundice. It is also responsible for the brown color of feces, via its conversion to stercobilin, and the background straw-yellow color of urine via its breakdown product, urobilin.

Related Links:
Monash University
University of Warwick

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Gynecological Examination Chair
arco-matic
Spirometry & Oximetry Software
MIR Spiro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.