We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Epidermal Autograft Harvester Aids Chronic Wound Recovery

By HospiMedica International staff writers
Posted on 14 Feb 2017
A new skin-graft harvesting system aids in the treatment of chronic wounds and reduces care costs by accelerating the healing process.

The Acelity CelluTome Epidermal Harvesting System offers a minimally invasive epidermal grafting technique that creates minimal donor site damage and scarring, provides increased expansion ratios, and can be performed easily and in a relatively pain-free manner in the outpatient setting. More...
The resultant epidermal graft can help to reduce healing time in both chronic and small acute wounds, with a potentially significant impact on the overall cost of chronic wound care.

The device works by creating multiple suction-induced epidermal blisters between two stainless steel plates with an array of 1.75-mm holes by using a constant negative pressure of 400-500 mmHg at a temperature of 37° to 41° C. The suction blisters develop inside the disposable harvester, with more than 128 blisters created over an area of 25 cm2 of donor skin. An integrated cutter blade is then used to separate the blisters, which are peeled away with a transparent dressing and applied over the recipient site.

In a study conducted at the University of Missouri Healthcare System that involved 13 patients with various types of chronic wounds, the CelluTome Epidermal Harvesting System grafts resulted in healing rates of 62%; eight of the 13 patients healed within four months, two were lost to follow-up, and three had wounds that remained open. In fact, four of the patients healed in less than one month. In addition, the comparatively rapid closure of the open wounds also reduced health care costs by an average of USD 1,153 per patient.

“Chronic wounds occur when healing fails to progress normally and persists for more than 30 days. Current treatments such as moist dressings, frequent irrigations, and wound cleaning are not always enough to ensure that healing occurs in high-risk patients,” said lead author Jeffrey Litt, DO. “Although a skin graft can be used to close a wound that refuses to heal, the surgical technique usually is painful, time-consuming and leaves significant donor site wounds.”

There are two types of skin grafts; a full thickness skin graft that consists of the epidermis and the entire thickness of the dermis, and a split-thickness skin graft that includes the epidermis and part of the dermis. Split-thickness grafts are frequently used as they can cover large areas and the rate of auto-rejection is low. The donor site heals by re-epithelialization from the dermis and surrounding skin and requires dressings.


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Blood Bank Refrigerator
MBR-705GR-PE
Medical Monitor
SILENIO D
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.