We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




NanoSeptic Surface Effective Against a Variety of Pathogens

By HospiMedica International staff writers
Posted on 02 Apr 2014
An innovative disruptive technology provides a new tool in the fight against infection and illness of even the most dangerous pathogens.

The NanoSeptic surface, developed in the Center for Advanced Engineering and Research (CAER; Forest, VA, USA) and manufactured by NanoTouch Materials (Forest, VA, USA), is composed of antimicrobial components that are molecularly bonded on a nanoscale, providing a nonleaching, self-cleaning surface that constantly traps and kills bacteria, viruses, and fungi through a catalytic oxidation process using available light. More...
The surfaces also eventually degrade the endotoxins the are the result of bacterial death.

The surfaces work constantly kill pathogens utilizing nanotechnology rather than chemicals, diluted poisons, or heavy metals, and for a period that lasts 6-12 months, as long as he surface is not worn. Possible applications and targets include facility touch points such as door push-pads and handle wraps, as well as portable mats for counters, tray tables, and bathroom vanities. The surfaces were tested at King Abdul-Aziz University Hospital (KSU; Riyadh, Saudi Arabia) against several types of Gram positive, Gram negative, and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria.

“After receiving the initial test results, we started calling the NanoSeptic products 'Magical Paper' because of their ability to kill bacteria,” said Amr Saeb, PhD, head of biotechnology at KSU. “This product was able to Kill 100% of E. coli and P. aeruginosa and 88% of MRSA germs after only one hour. As a microbial geneticist, I am really excited by the latest approaches to kill pathogens in a safe and environmentally conscious way without generating resistant microbes which are difficult to treat.”

“At NanoTouch, we're so excited that research centers across the globe are validating our ongoing mission—to change the world.” said Dennis Hackemeyer, cofounder of NanoTouch Materials. “Another exciting aspect of NanoSeptic products is the visual communication which has the potential to change behavior. Visitors gravitate toward touching the NanoSeptic surface which keeps other surfaces cleaner.”

Related Links:

Center for Advanced Engineering and Research
NanoTouch Materials



Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Exam Table
PF400
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.