We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Precise Gas Sensor Could Monitor Pollution and Detect Disease

By HospiMedica International staff writers
Posted on 08 Oct 2009
A portable nitric oxide (NO) gas sensor, suitable for large-scale deployment, could be of great value to atmospheric science, pollution control, biology, and medicine.

Researchers at Princeton University (NJ, USA) and Rice University (Houston, TX, USA) developed an ultrasensitive NO detector that uses lasers and sensors that are inexpensive, compact, and highly sensitive. More...
The device, a transportable Faraday rotation spectroscopic system, is based on a tunable external cavity quantum cascade laser. A broadly tunable laser source allows targeting the optimum molecular transition of the NO fundamental band. For an active optical path of 44 cm and a one second lock-in time, constant minimum NO detection limits of 4.3 parts per billion by volume (ppbv) and 0.38 ppbv are obtained by using a thermoelectrically cooled mercury–cadmium–telluride photodetector and liquid nitrogen-cooled indium–antimonide photodetector, respectively. The laser light passes through polarizing filters that block all light unless NO is present.

Preliminary tests of the device were conducted during the 2008 Olympic games held in Beijing (China). The researchers believe their device could find uses ranging from the study and control of car and truck emissions to monitoring human exposure to pollutants in urban and industrial environments. For medical uses, the device is particularly attractive because the results are not corrupted by water vapor, which is present in breath samples. Testing for nitric oxide in a patient's breath, for example, could reveal chronic obstructive pulmonary disease and inflammation. The study was published in the August 4, 2009, issue of the Proceedings of the National Academy of Sciences (PNAS).

"The sensor we have developed is much more accurate and sensitive than existing systems, yet is far more compact and portable,” said coauthor Gerard Wysocki, Ph.D., an assistant professor of electrical engineering at Princeton. "The more nitric oxide, the more light makes it through the filters. There's no background signal to worry about.”

Existing systems to detect NO and other trace gases have a variety of drawbacks. Some, such as carbon monoxide (CO) sensors for homes, are compact and inexpensive, but not very sensitive. High-end systems, such as mass spectrometers and gas chromatographs, are much more sensitive, but are slow, bulky, complicated and expensive, making them impractical for use outside of a laboratory. Intermediate sensitivity optical systems pass a laser beam through a gas sample and detect whether some of the laser light is absorbed by the gas sample; however, the amount of absorption is very small compared to the overall amount of laser light, so the signal is hard to detect. Further, conventional optical sensors tend to be bulky, use large amounts of the sample, and require frequent operator intervention.

Related Links:
Princeton University
Rice University


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
PACS Workstation
PaxeraView PRO
Radiology System
Riviera SPV AT
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.