We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI X-ray Analysis Equal to Orthopedic Surgeon Diagnosis

By HospiMedica International staff writers
Posted on 20 Jul 2017
A new study suggests that artificial intelligence (AI) deep learning algorithms are on par with humans for diagnosing fractures from orthopedic radiographs.

Researchers at Karolinska Institutet (KI; Solna, Sweden), the Royal Institute of Technology (KTH; Stockholm, Sweden), and Danderyd Hospital (Sweden) extracted 256,000 wrist, hand, and ankle radiographs stored at Danderyd Hospital, classifying them by four variables - fracture, laterality, body part, and exam view. Five deep learning networks were then examined, with the most accurate network benchmarked against a gold standard for fractures.

The deep learning networks were then trained to identify fractures in two thirds of the radiographs under the guidance of the researchers, and then independently analyzed the remaining images, which were completely new to the AI program. Analysis was then compared with that of two senior orthopedic surgeons who reviewed the images at the same resolution as the network. The results showed that all networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view.

The final accuracy for fractures was estimated at 83% for the best performing network, which was equivalent to that of senior orthopedic surgeons when they were presented with images at the same resolution as the network. According to the researchers, AI has the potential to do even better with access to greater amounts of data, and they have therefore begun a follow-up study that will include Danderyd Hospital's entire orthopedic archive of over a million high-resolution radiographs. The study was published on July 6, 2017, in Acta Orthopaedica.

“Our study shows that AI networks can make assessments on a par with human specialists, and we hope that we'll be able to achieve even better results with high-res X-ray images,” said senior author Max Gordon, MD, assistant consultant in orthopedics at Danderyd Hospital. “If we can go back to our digital archives, we'll also be able to do extensive research on survival, the development of disease and work capacity - studies that have been impossible to do owing to the amount of data to process.”

Deep learning is part of a broader family of machine learning methods that is based on learning data representations, as opposed to task specific algorithms. It involves artificial neural network (ANN) algorithms that use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Karolinska Institutet
Royal Institute of Technology
Danderyd Hospital

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
OR Table Accessory
Angular Accessory Rail
Silver Member
ECG Management System
NEMS Web
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.