Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Human Torso Simulator Helps Design Brace Innovations

By HospiMedica International staff writers
Posted on 14 Aug 2019
A simulator that mimics the mechanical behavior of the human torso allows researchers to test different back brace designs and configurations without needing to test them on people.

Developed at Lancaster University (United Kingdom), the simulator is composed of a male torso-shaped mechanical test rig and a three-dimensionally (3D) printed spine and rib cage, which was created using modified computer aided design (CAD) models derived from CT scans of a human spine. More...
The test rig allows for different spine configurations and deformities, such as scoliosis, to be modeled and tested with different back braces, all without causing discomfort to human testers, thus removing significant logistical and ethical issues.

With geometries that resemble human tissues, and with the aid of computer simulation physiological models, researchers can collect important data on the reduction of flexion, extension, lateral bending, and torsion for each back brace design examined. The researchers have already tested the rig with two novel back brace designs, one an existing medical back brace and the other a weightlifting belt. The study describing the development and testing process was published on July 30, 2019, in Computer Methods in Biomechanics and Biomedical Engineering.

“Back braces have been used as both medical and retail products for decades, however existing designs can often be found to be heavy, overly rigid, indiscrete, and uncomfortable,” said senior author engineer David Cheneler, PhD. “Our simulator enables new back braces to be developed that are optimized to constrain particular motions but allowing for other movements. It could also help with the design of braces and supports with targeted restriction of movement, which would be beneficial to some conditions and helping to reduce the risk of muscle-loss.”

Back braces are designed to limit spine motion in cases of fracture or in post-operative fusions, as well as a preventative measure against some progressive conditions. The two most common back braces include rigid braces that restrict motion by as much as 50%; and soft, elastic braces that limit forward motion of the spine and support it during occasions of stress (such as lifting of heavy loads) or post-operatively to assist in setting spinal fusions.

Related Links:
Lancaster University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
Radiology System
Riviera SPV AT
X-Ray System
Leonardo DR mini III
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.