Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans

By HospiMedica International staff writers
Posted on 29 Jan 2025

The removal of a malignant brain tumor, or glioma, can significantly extend a patient’s life, depending on the type of glioma. More...

However, the true impact of surgery on complex cognitive functions remains unclear, and it may mark the beginning of a challenging recovery process. Many patients experience cognitive difficulties, such as issues with concentration and performing complex tasks, after their brain tumor is removed. These challenges can greatly affect their daily lives, severely diminishing their quality of life. While neurological issues like partial paralysis and vision loss are well understood, the effects of surgery on more intricate cognitive functions are less clear, making it difficult to predict how individual patients will be impacted. Now, researchers have developed an artificial intelligence (AI) model that can predict the effects of surgery on cognitive tasks by using neural connection data extracted from a patient’s pre-surgery MRI scans.

The AI model, developed at Eindhoven University of Technology (TU/e, Eindhoven, Netherlands), can assist in predicting how a patient with a malignant brain tumor will perform cognitive tasks post-surgery. The brain’s function relies heavily on neurons that form long-distance bundles, known as white matter, which physically connect different regions of the brain. The researchers used detailed structural information from the white-matter connections visible in MRI scans before surgery as input for their model. This data was then analyzed to assess how resistant each patient’s brain might be to damage resulting from the tumor removal process.

Previously, predicting cognitive outcomes after treatment was nearly impossible, despite the importance of these outcomes in a patient’s daily life. The information generated by this AI model could assist surgeons in evaluating a patient’s suitability for surgery, potentially preventing vulnerable patients from enduring irreversible neurological disabilities. However, this approach must undergo clinical validation with a large group of patients before it can be widely adopted. Going forward, the researchers plan to integrate more personalized data, such as brain activity, into their predictive model to enhance its accuracy. A more refined model could greatly reduce the risks of neurological impairment following surgery and improve the quality of life for patients recovering from brain tumor treatments.

“This model is based on properties of white matter connections in patient’s brains before surgery,” said Lars Smolders, PhD researcher in the Department of Mathematics and Computer Science, who developed the AI model along with colleagues. “To me, it is fascinating that we can develop a measure of a brain’s vulnerability to damage (inflicted by surgery and/or chemo- and radiotherapy) based only on MRI images.”

Related Links:
TU/e


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Gynecological Examination Chair
arco-matic
Morcellator
TCM 3000 BL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.