We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Magnetically Driven Robotic Microscrews for Fallopian Tube Blockages to Revolutionize Infertility Treatment

By HospiMedica International staff writers
Posted on 18 Dec 2024

Infertility affects approximately 186 million individuals globally, with fallopian tube obstruction being responsible for 11%-67% of female infertility cases. More...

To address this issue, researchers have developed an innovative solution that uses a magnetically controlled robotic microscrew to treat blockages in the fallopian tubes.

The microrobot, developed by the SIAT Magnetic Soft Microrobots Lab (Guangdong, China), is constructed from nonmagnetic photosensitive resin and coated with a thin layer of iron to impart magnetic properties. When an external magnetic field is applied, the robot rotates, creating translational motion that allows it to navigate through a glass channel designed to simulate a fallopian tube. The robot successfully removes a cell cluster obstruction placed in the channel, mimicking typical blockages in the female reproductive system. This magnetic control offers precise navigation through the delicate, narrow passageways of the fallopian tube. The design of the microrobot is another notable innovation. It features a screw-shaped body with a helical structure, a cylindrical central tube, and a disk-shaped tail. The helical structure is essential for propulsion, while the disk-shaped tail stabilizes the robot’s movement. As the screw rotates, it generates a vortex field that helps propel debris toward the tail, effectively clearing the blockage.

In the study published in the journal AIP Advances, the microrobot demonstrated both effectiveness and efficiency in clearing simulated blockages, with the vortex created by the rotating screw pushing debris away from the obstruction. Moving forward, the research team plans to further miniaturize the microrobot and enhance its capabilities. They also intend to test it in isolated organ models and incorporate real-time in vivo imaging systems to track the robot’s movement and position. Additionally, the team envisions expanding the robot’s use in surgical applications, including automatic control systems that could improve the efficiency of blockage removal and other medical procedures.

“This new technology offers a potentially less invasive alternative to the traditional surgical methods currently used to clear tubal obstructions, which often involve the use of conventional catheters and guidewires,” said author Haifeng Xu. “The ultimate goal is to provide a more effective, minimally invasive solution for patients suffering from infertility.”


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Ultrasound System
FUTUS LE
Radiology System
Riviera SPV AT
Newborn Hearing Screener
ALGO 7i
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.