Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Technology Allows Neurosurgeons to Identify Brain Tumor Type during Surgery

By HospiMedica International staff writers
Posted on 13 Oct 2023

When it comes to treating children with tumors in the brain or spinal cord, surgery is often the initial course of action. More...

However, during the procedure, neurosurgeons are typically in the dark about the specific type of tumor and its degree of aggressiveness. A definitive diagnosis is generally not available until a week post-surgery, once the pathologist has thoroughly examined the tumor tissue both visually and molecularly. A breakthrough technology now enables the identification of the tumor type during the surgery itself, within just 1.5 hours, which allows for real-time adjustments to the surgical approach.

Researchers from UMC Utrecht (Utrecht, Netherlands) have come up with a deep-learning algorithm that significantly speeds up the diagnostic process. Leveraging the recently introduced nanopore sequencing technology capable of real-time DNA reading, the researchers have designed an algorithm capable of learning from millions of simulated but realistic DNA sequences. Named 'Sturgeon,' this algorithm can identify the type of tumor in a matter of 20 to 40 minutes, fast enough to alter surgical plans on the fly if needed.

The deep learning algorithm underwent training and validation using a wealth of data from a comprehensive biobank containing tissue samples from children with brain tumors. It was also practically applied multiple times in actual brain surgeries, from the extraction of the tissue sample to determining the type of tumor. Sometimes, a small piece of the tumor tissue is intentionally left behind during surgery to avert neurological complications. If it's later found that the tumor is particularly aggressive, a second surgery may be required, putting additional stress and risks on the patient and their family. This new algorithm eliminates that uncertainty by giving surgeons real-time information about the tumor type.

While the technology is promising, further research is needed to broaden its application. Additional tumor types could be incorporated into the algorithm to meet international standards and enable data comparison. Moreover, outcomes between this new quick method and the current, lengthier one will be compared in collaboration with other domestic and international centers to gauge whether the new technique also enhances patients' quality of life in the long-term.

“It is truly exciting that we have been able to actually make the step into clinical practice by combining all areas of expertise, from basic researchers to pathologists and surgeons. By doing so, we can help surgeons to optimize the outcome of brain tumor surgery,” said Jeroen de Ridder, research group leader within UMC Utrecht.

Related Links:
UMC Utrecht 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Spirometry & Oximetry Software
MIR Spiro
X-Ray Meter
Cobia SENSE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.