We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI Model Analyzes Tumors Removed Surgically in Real-Time

By HospiMedica International staff writers
Posted on 26 Sep 2023
Print article
Image: The AI model improves tumor removal accuracy during breast cancer surgery (Photo courtesy of UNC School of Medicine)
Image: The AI model improves tumor removal accuracy during breast cancer surgery (Photo courtesy of UNC School of Medicine)

During breast cancer surgery, the surgeon removes the tumor, also known as a specimen, along with a bit of the adjacent healthy tissue to ensure all cancerous cells are excised. This specimen is then X-rayed using mammography equipment and examined by the medical team to confirm that the problematic area has been removed. Following that, the specimen goes to a pathology lab for a more detailed analysis where the pathologist checks if the cancer cells have reached the outer edge of the removed tissue, called the pathological margin. If they have, it's likely that some cancer cells could still be present in the breast, necessitating additional surgery. This pathology process, however, could take as long as a week post-surgery. Researchers have now created an artificial intelligence ( AI) model capable of predicting whether all the cancerous tissue has been successfully removed during breast cancer surgery.

To train this AI model, researchers at the University of North Carolina School of Medicine (Chapel Hill, NC, USA) used a large number of mammogram images of specimens, which they then matched with the final reports from pathologists. Specimen mammography, or photographing the specimen with an X-ray, can be done right in the operating room. Additionally, the researchers included patient demographic information like age, race, and specifics about the tumor, such as its type and size. Upon assessing the AI model's ability to correctly identify pathological margins, it was found to be at least as accurate as human interpretation, if not more so. Particularly, the AI was either on par with or slightly better than human experts at recognizing positive margins.

The researchers note that this AI model is especially beneficial for patients with denser breast tissue. In mammograms, both tumors and high-density tissue appear bright white, making it challenging to determine where the cancer ends and where the normal tissue starts. The model could also be invaluable for hospitals with limited resources, as they may lack the specialized personnel required to make rapid and well-informed decisions during surgery. While the model is still in its developmental phase, researchers plan to keep adding more images and data from different patients and surgeons. Further validation studies are needed before this AI tool can be clinically implemented. The team expects the model's predictive accuracy to improve as it is exposed to more data related to normal and cancerous tissues and margins.

“Some cancers you can feel and see, but we can’t see microscopic cancer cells that may be present at the edge of the tissue removed. Other cancers are completely microscopic,” said senior author Kristalyn Gallagher, DO, section chief of breast surgery in the Division of Surgical Oncology and UNC Lineberger member. “This AI tool would allow us to more accurately analyze tumors removed surgically in real-time, and increase the chance that all of the cancer cells are removed during the surgery. This would prevent the need to bring patients back for a second or third surgery.”

Related Links:
UNC School of Medicine 

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Medical Monitor
SILENIO D
Radiology System
Riviera SPV AT

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.