Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Focused Ultrasound May Benefit Patients with Epilepsy

By HospiMedica International staff writers
Posted on 17 Nov 2021
A new study suggests that focused ultrasound (FUS) of the brain may benefit patients with drug-resistant epilepsy (DRE).

Researchers at National Yang Ming Chiao Tung University (NYCU; Taipei, Taiwan), Taipei Veterans General Hospital (Taiwan), and other institutions conducted a study in six DRE patients who were scheduled to undergo stereo-electroencephalography (SEEG) for localization of the seizure onset zone (SOZ), providing a window of opportunity to investigate the neuromodulatory effects of FUS. More...
Simultaneous SEEG recordings were obtained during sonication and for three days after treatment to monitor seizures, interictal epileptiform discharges, and adverse events.

The results revealed a decrease in seizure frequency in two patients within the three-day follow-up, with significant changes in spectral power of SEEG noted at the targeted electrodes during FUS; one patient showed an increase in the frequency of subclinical seizures. Magnetic resonance imaging (MRI) revealed neither lesion nor brain edema. One patient reported subjective scalp heating during FUS, and one patient developed transient naming and memory impairment that resolved within three weeks. The study was published on November 2, 2021, in Epilepsia.

“Neuromodulation is an alternative treatment for drug-resistant epilepsy. Compared with the present modalities used in neuromodulation for epilepsy, focused ultrasound can access deeper brain regions and focus on the main target of the epileptic network in a relatively less invasive approach,” said senior author Hsiang-Yu Yu, PhD, of VGHTPE and the NYCU Brain Research Center. “It gives new hope and sheds new light for patients with drug-resistant epilepsy.”

Focused ultrasound is based on nonlinear acoustic mathematical optimization methods to analyze and simulate the propagation of sound in material. The information is then used to enhance the shape of an acoustic lens in such a way that that ultrasound pressure is focused precisely on the location of the tissue to be treated, while the surrounding tissue retains as little damage as possible.

Related Links:
National Yang Ming Chiao Tung University
Taipei Veterans General Hospital



Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Imaging Table
Stille imagiQ2
Gynecological Examination Chair
arco-matic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.