Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Mind-Controlled Robotic Arm Benefits Paralyzed Patients

By HospiMedica International staff writers
Posted on 03 Jul 2019
A noninvasive brain-computer interface (BCI) allows a mind-controlled robotic arm to continuously track and follow a computer cursor, using only thoughts.

Developed by researchers at Carnegie Mellon University (CMU; Pittsburgh, PA, USA) and the University of Minnesota (UMN; Minneapolis, USA), the new BCI facilitates real-time continuous robotic device control by increasing user engagement and spatial resolution of noninvasive neural data through electroencephalogram (EEG) source imaging, accompanied by a continuous pursuit task and an associated training paradigm. In all, the framework enhanced BCI learning by nearly 60% for traditional center-out tasks, and by more than 500% in the more realistic continuous pursuit task.

The researchers further demonstrated an additional enhancement in BCI control of almost 10% by using online noninvasive neuroimaging. The framework was also deployed in a physical task, demonstrating a near-seamless transition from the control of an unconstrained virtual cursor to the real-time control of a robotic arm. The researchers claim that combining advances in the quality of neural decoding with the accessibility of noninvasive robotic arm control will have a major role in the future development and implementation of neurorobotics. The study was published on June 19, 2019, in Science Robotics.

“There have been major advances in mind controlled robotic devices using brain implants. It's excellent science, but noninvasive is the ultimate goal,” said senior author Professor Bin He, PhD, head of the department of biomedical engineering at CMU. “This work represents an important step in noninvasive brain-computer interfaces, a technology which someday may become a pervasive assistive technology aiding everyone, like smartphones.”

Direct electrical stimulation and recording of brain activity requires invasive procedures, such as the removal of a portion of the skull or the drilling of a burr hole. Also, electrode implantation into tissue can cause inflammatory tissue responses and brain trauma, and lead to device failure. A noninvasive counterpart requiring less intervention could profoundly improve the integration of BCIs into the clinical and home setting.

Related Links:
Carnegie Mellon University
University of Minnesota


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Autoclave
Advance
Cardiograph Device
PageWriter TC35
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.