Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




3D-Printed Mesh Facilitates Orthopedic Brace Manufacture

By HospiMedica International staff writers
Posted on 04 Jul 2019
A new study suggests that additive manufacturing (AM) of biomechanically tailored flexible meshes could lead to personalized wearable and implantable devices.

Developed at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), the meshes are fabricated by extrusion of thermoplastic polyurethane using a continuous AM tool path to tailor the elasticity of the mesh cells via slack modification and modulation of the filament–filament bonding. The resulting mesh configuration resembles a tough, pliable fabric with directionally specific inversion stiffness. The wider the spacing of the unit cells, the more the mesh can be stretched at low strain before becoming stiffer, a design principle that tailors the mesh's degree of flexibility and helps it mimic soft tissue.

The pliable mesh can also be hardened by printing stainless steel fibers over regions of the elastic mesh where stiffer properties are needed, and then printing a third elastic layer over the steel to sandwich the stiffer thread into the mesh. The combination of both stiff and elastic materials provides the mesh with the ability to stretch easily up to a point, after which it starts to stiffen. The meshes can also be designed as an auxetic structure, a structure that becomes wider when pulled. Auxetic structures can also support highly curved surfaces of the body.

To demonstrate the capabilities of the new mesh, the researchers fashioned an ankle brace with directionally specific inversion stiffness arising from the embedded mesh, which can provide stronger support to prevent, for instance, a muscle from overstraining. They mesh's structure prevents the ankle from turning inward, while still allowing the joint to move freely in other directions. The tensile mesh mechanics of the brace were engineered to match the nonlinear response of muscle. The researchers also fabricated a knee brace that conforms to the knee as it bends, and a glove with a 3D-printed mesh sewn into its top surface, which conforms to a wearer's knuckles. The study was published on June 19, 2019, in Advanced Functional Materials.

“We were trying to think of how we can make 3D-printed constructs more flexible and comfortable, like textiles and fabrics. One of the reasons textiles are so flexible is that the fibers are able to move relative to each other easily,” said lead author mechanical engineer Sebastian Pattinson, PhD. “There's potential to make all sorts of devices that interface with the human body. Surgical meshes, orthoses, even cardiovascular devices like stents; you can imagine all potentially benefiting from the kinds of structures we show.”

Additive manufacturing describes technologies that build 3D objects using computer-aided design (CAD) modeling software, machine equipment, and layering material. Once a CAD sketch is produced, the data is relayed to the printer, which lays downs or adds successive layers of liquid, powder, sheet material or other, in a layer-upon-layer fashion to fabricate a 3D object. Many technologies are included in this definition, such as rapid prototyping, direct digital manufacturing, layered manufacturing, and additive fabrication.

Related Links:
Massachusetts Institute of Technology


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Ultrasound System
FUTUS LE
X-Ray Meter
Cobia SENSE
Medical Monitor
SILENIO D
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.